Split traces into subtraces

This commit is contained in:
Patrick Niklaus 2015-02-17 12:22:11 +01:00
parent d620da365e
commit cb4a81008c
2 changed files with 155 additions and 98 deletions

View File

@ -62,9 +62,6 @@ template <class DataFacadeT> class MapMatchingPlugin : public BasePlugin
0.7977883096366508) // valid apriori probability
{
descriptor_table.emplace("json", 0);
descriptor_table.emplace("gpx", 1);
// descriptor_table.emplace("geojson", 2);
//
search_engine_ptr = std::make_shared<SearchEngine<DataFacadeT>>(facade);
}
@ -93,12 +90,13 @@ template <class DataFacadeT> class MapMatchingPlugin : public BasePlugin
return label_with_confidence;
}
bool get_candiates(const std::vector<FixedPointCoordinate>& input_coords, double& trace_length, Matching::CandidateLists& candidates_lists)
bool get_candiates(const std::vector<FixedPointCoordinate>& input_coords, std::vector<double>& sub_trace_lengths, Matching::CandidateLists& candidates_lists)
{
double last_distance = coordinate_calculation::great_circle_distance(
input_coords[0],
input_coords[1]);
trace_length = 0;
sub_trace_lengths.resize(input_coords.size());
sub_trace_lengths[0] = 0;
for (const auto current_coordinate : osrm::irange<std::size_t>(0, input_coords.size()))
{
bool allow_uturn = false;
@ -107,7 +105,7 @@ template <class DataFacadeT> class MapMatchingPlugin : public BasePlugin
last_distance = coordinate_calculation::great_circle_distance(
input_coords[current_coordinate - 1],
input_coords[current_coordinate]);
trace_length += last_distance;
sub_trace_lengths[current_coordinate] += sub_trace_lengths[current_coordinate-1] + last_distance;
}
if (input_coords.size()-1 > current_coordinate && 0 < current_coordinate)
@ -171,10 +169,10 @@ template <class DataFacadeT> class MapMatchingPlugin : public BasePlugin
return 400;
}
double trace_length;
std::vector<double> sub_trace_lengths;
Matching::CandidateLists candidates_lists;
const auto& input_coords = route_parameters.coordinates;
bool found_candidates = get_candiates(input_coords, trace_length, candidates_lists);
bool found_candidates = get_candiates(input_coords, sub_trace_lengths, candidates_lists);
if (!found_candidates)
{
return 400;
@ -182,72 +180,91 @@ template <class DataFacadeT> class MapMatchingPlugin : public BasePlugin
// call the actual map matching
JSON::Object debug_info;
float matched_length;
std::vector<PhantomNode> matched_nodes;
search_engine_ptr->map_matching(candidates_lists, input_coords, matched_nodes, matched_length, debug_info);
Matching::SubMatchingList sub_matchings;
search_engine_ptr->map_matching(candidates_lists, input_coords, sub_matchings, debug_info);
// classify result
TraceClassification classification = classify(trace_length, matched_length, input_coords.size() - matched_nodes.size());
if (classification.first == ClassifierT::ClassLabel::POSITIVE)
{
json_result.values["confidence"] = classification.second;
}
else
{
json_result.values["confidence"] = 1-classification.second;
}
// run shortest path routing to obtain geometry
InternalRouteResult raw_route;
PhantomNodes current_phantom_node_pair;
for (unsigned i = 0; i < matched_nodes.size() - 1; ++i)
{
current_phantom_node_pair.source_phantom = matched_nodes[i];
current_phantom_node_pair.target_phantom = matched_nodes[i + 1];
raw_route.segment_end_coordinates.emplace_back(current_phantom_node_pair);
}
if (2 > matched_nodes.size())
if (1 > sub_matchings.size())
{
return 400;
}
search_engine_ptr->shortest_path(
raw_route.segment_end_coordinates,
std::vector<bool>(raw_route.segment_end_coordinates.size(), true),
raw_route);
DescriptorConfig descriptor_config;
auto iter = descriptor_table.find(route_parameters.output_format);
unsigned descriptor_type = (iter != descriptor_table.end() ? iter->second : 0);
descriptor_config.zoom_level = route_parameters.zoom_level;
descriptor_config.instructions = route_parameters.print_instructions;
descriptor_config.geometry = route_parameters.geometry;
descriptor_config.encode_geometry = route_parameters.compression;
std::shared_ptr<BaseDescriptor<DataFacadeT>> descriptor;
switch (descriptor_type)
JSON::Array traces;
for (auto& sub : sub_matchings)
{
// case 0:
// descriptor = std::make_shared<JSONDescriptor<DataFacadeT>>();
// break;
case 1:
descriptor = std::make_shared<GPXDescriptor<DataFacadeT>>(facade);
break;
// case 2:
// descriptor = std::make_shared<GEOJSONDescriptor<DataFacadeT>>();
// break;
default:
descriptor = std::make_shared<JSONDescriptor<DataFacadeT>>(facade);
break;
// classify result
double trace_length = sub_trace_lengths[sub.end_idx-1] - sub_trace_lengths[sub.begin_idx];
TraceClassification classification = classify(trace_length,
sub.length,
(sub.end_idx - sub.begin_idx) - sub.nodes.size());
if (classification.first == ClassifierT::ClassLabel::POSITIVE)
{
sub.confidence = classification.second;
}
else
{
sub.confidence = 1-classification.second;
}
// FIXME this is a pretty bad hack. Geometries should obtained directly
// from map_matching.
// run shortest path routing to obtain geometry
InternalRouteResult raw_route;
PhantomNodes current_phantom_node_pair;
for (unsigned i = 0; i < sub.nodes.size() - 1; ++i)
{
current_phantom_node_pair.source_phantom = sub.nodes[i];
current_phantom_node_pair.target_phantom = sub.nodes[i + 1];
raw_route.segment_end_coordinates.emplace_back(current_phantom_node_pair);
}
search_engine_ptr->shortest_path(
raw_route.segment_end_coordinates,
std::vector<bool>(raw_route.segment_end_coordinates.size(), true),
raw_route);
DescriptorConfig descriptor_config;
auto iter = descriptor_table.find(route_parameters.output_format);
unsigned descriptor_type = (iter != descriptor_table.end() ? iter->second : 0);
descriptor_config.zoom_level = route_parameters.zoom_level;
descriptor_config.instructions = false;
descriptor_config.geometry = route_parameters.geometry;
descriptor_config.encode_geometry = route_parameters.compression;
std::shared_ptr<BaseDescriptor<DataFacadeT>> descriptor;
switch (descriptor_type)
{
// case 0:
// descriptor = std::make_shared<JSONDescriptor<DataFacadeT>>();
// break;
case 1:
descriptor = std::make_shared<GPXDescriptor<DataFacadeT>>(facade);
break;
// case 2:
// descriptor = std::make_shared<GEOJSONDescriptor<DataFacadeT>>();
// break;
default:
descriptor = std::make_shared<JSONDescriptor<DataFacadeT>>(facade);
break;
}
JSON::Object temp_result;
descriptor->SetConfig(descriptor_config);
descriptor->Run(raw_route, temp_result);
JSON::Object subtrace;
// via_route compability
subtrace.values["route_geometry"] = temp_result.values["route_geometry"];
subtrace.values["confidence"] = sub.confidence;
subtrace.values["via_indicies"] = temp_result.values["via_indicies"];
subtrace.values["via_points"] = temp_result.values["via_points"];
traces.values.push_back(subtrace);
}
descriptor->SetConfig(descriptor_config);
descriptor->Run(raw_route, json_result);
json_result.values["debug"] = debug_info;
json_result.values["traces"] = traces;
return 200;
}

View File

@ -70,9 +70,19 @@ JSON::Array makeJSONArray(Args... args)
namespace Matching
{
typedef std::vector<std::pair<PhantomNode, double>> CandidateList;
typedef std::vector<CandidateList> CandidateLists;
typedef std::pair<PhantomNodes, double> PhantomNodesWithProbability;
struct SubMatching
{
std::vector<PhantomNode> nodes;
unsigned begin_idx;
unsigned end_idx;
double length;
double confidence;
};
using CandidateList = std::vector<std::pair<PhantomNode, double>>;
using CandidateLists = std::vector<CandidateList>;
using SubMatchingList = std::vector<SubMatching>;
constexpr static const unsigned max_number_of_candidates = 20;
}
@ -313,8 +323,7 @@ template <class DataFacadeT> class MapMatching final
void operator()(const Matching::CandidateLists &timestamp_list,
const std::vector<FixedPointCoordinate> coordinate_list,
std::vector<PhantomNode>& matched_nodes,
float& matched_length,
Matching::SubMatchingList& sub_matchings,
JSON::Object& _debug_info) const
{
BOOST_ASSERT(timestamp_list.size() > 0);
@ -348,6 +357,7 @@ template <class DataFacadeT> class MapMatching final
_debug_states.values.push_back(_debug_timestamps);
}
std::vector<unsigned> split_points;
std::vector<unsigned> prev_unbroken_timestamps;
prev_unbroken_timestamps.reserve(timestamp_list.size());
prev_unbroken_timestamps.push_back(initial_timestamp);
@ -366,6 +376,8 @@ template <class DataFacadeT> class MapMatching final
const auto& current_timestamps_list = timestamp_list[t];
const auto& current_coordinate = coordinate_list[t];
std::cout << " # " << prev_unbroken_timestamp << " -> " << t << std::endl;
// compute d_t for this timestamp and the next one
for (auto s = 0u; s < prev_viterbi.size(); ++s)
{
@ -433,16 +445,24 @@ template <class DataFacadeT> class MapMatching final
if (model.breakage[t])
{
std::cout << "Broken!" << std::endl;
// TODO we actually don't need to go to the beginning.
// with temporal information we can split after _n_
// skipped states
if (prev_unbroken_timestamps.size() > 1)
{
// remove both ends of the breakge
prev_unbroken_timestamps.pop_back();
}
// we reached the beginning of the trace, discard the whole beginning
// we reached the beginning of the trace and it is still broken
// -> split the trace here
else
{
split_points.push_back(t);
// note this preserves everything before t
model.clear(t);
model.initialize(t);
prev_unbroken_timestamps.push_back(t);
}
}
else
@ -451,41 +471,61 @@ template <class DataFacadeT> class MapMatching final
}
}
if (prev_unbroken_timestamps.size() < 1)
if (prev_unbroken_timestamps.size() > 1)
{
return;
split_points.push_back(prev_unbroken_timestamps.back()+1);
}
unsigned last_unbroken_timestamp = prev_unbroken_timestamps.back();
// loop through the columns, and only compare the last entry
auto max_element_iter = std::max_element(model.viterbi[last_unbroken_timestamp].begin(),
model.viterbi[last_unbroken_timestamp].end());
auto parent_index = std::distance(model.viterbi[last_unbroken_timestamp].begin(), max_element_iter);
std::deque<std::pair<std::size_t, std::size_t>> reconstructed_indices;
for (auto i = last_unbroken_timestamp; i > initial_timestamp; --i)
unsigned sub_matching_begin = initial_timestamp;
for (const unsigned sub_matching_end : split_points)
{
if (model.breakage[i])
Matching::SubMatching matching;
// matchings that only consist of one candidate are invalid
if (sub_matching_end - sub_matching_begin < 2)
{
sub_matching_begin = sub_matching_end;
continue;
reconstructed_indices.emplace_front(i, parent_index);
parent_index = model.parents[i][parent_index];
}
reconstructed_indices.emplace_front(initial_timestamp, parent_index);
}
matched_length = 0.0f;
matched_nodes.resize(reconstructed_indices.size());
for (auto i = 0u; i < reconstructed_indices.size(); ++i)
{
auto timestamp_index = reconstructed_indices[i].first;
auto location_index = reconstructed_indices[i].second;
std::cout << sub_matching_begin << " -> " << sub_matching_end << std::endl;
matched_nodes[i] = timestamp_list[timestamp_index][location_index].first;
matched_length += model.path_lengths[timestamp_index][location_index];
matching.begin_idx = sub_matching_begin;
matching.end_idx = sub_matching_end;
_debug_states.values[timestamp_index]
.get<JSONVariantArray>().get().values[location_index]
.get<JSONVariantObject>().get().values["chosen"] = true;
// loop through the columns, and only compare the last entry
auto max_element_iter = std::max_element(model.viterbi[sub_matching_end-1].begin(),
model.viterbi[sub_matching_end-1].end());
auto parent_index = std::distance(model.viterbi[sub_matching_end-1].begin(), max_element_iter);
std::deque<std::pair<std::size_t, std::size_t>> reconstructed_indices;
for (auto i = sub_matching_end-1; i > sub_matching_begin; --i)
{
if (model.breakage[i])
continue;
reconstructed_indices.emplace_front(i, parent_index);
parent_index = model.parents[i][parent_index];
}
reconstructed_indices.emplace_front(initial_timestamp, parent_index);
matching.length = 0.0f;
matching.nodes.resize(reconstructed_indices.size());
for (auto i = 0u; i < reconstructed_indices.size(); ++i)
{
auto timestamp_index = reconstructed_indices[i].first;
auto location_index = reconstructed_indices[i].second;
matching.nodes[i] = timestamp_list[timestamp_index][location_index].first;
matching.length += model.path_lengths[timestamp_index][location_index];
_debug_states.values[timestamp_index]
.get<JSONVariantArray>().get().values[location_index]
.get<JSONVariantObject>().get().values["chosen"] = true;
}
sub_matchings.push_back(matching);
sub_matching_begin = sub_matching_end;
}
JSON::Array _debug_breakage;