Fix calculation of best ops/sec in benchmarks (#6973)
This commit is contained in:
parent
0e17869e21
commit
cacb1b23f9
@ -86,9 +86,9 @@ def bootstrap_confidence_interval(data, num_samples=1000, confidence_level=0.95)
|
|||||||
mean = np.mean(means)
|
mean = np.mean(means)
|
||||||
return mean, lower_bound, upper_bound
|
return mean, lower_bound, upper_bound
|
||||||
|
|
||||||
def calculate_confidence_interval(data):
|
def calculate_confidence_interval(data, min_is_best=True):
|
||||||
mean, lower, upper = bootstrap_confidence_interval(data)
|
mean, lower, upper = bootstrap_confidence_interval(data)
|
||||||
min_value = np.min(data)
|
min_value = np.min(data) if min_is_best else np.max(data)
|
||||||
return mean, (upper - lower) / 2, min_value
|
return mean, (upper - lower) / 2, min_value
|
||||||
|
|
||||||
|
|
||||||
@ -117,7 +117,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
total_time, total_ci, total_best = calculate_confidence_interval(np.sum(all_times, axis=1))
|
total_time, total_ci, total_best = calculate_confidence_interval(np.sum(all_times, axis=1))
|
||||||
ops_per_sec, ops_per_sec_ci, ops_per_sec_best = calculate_confidence_interval(float(all_times.shape[1]) / np.sum(all_times / 1000, axis=1))
|
ops_per_sec, ops_per_sec_ci, ops_per_sec_best = calculate_confidence_interval(float(all_times.shape[1]) / np.sum(all_times / 1000, axis=1), min_is_best=False)
|
||||||
min_time, min_ci, _ = calculate_confidence_interval(np.min(all_times, axis=1))
|
min_time, min_ci, _ = calculate_confidence_interval(np.min(all_times, axis=1))
|
||||||
mean_time, mean_ci, _ = calculate_confidence_interval(np.mean(all_times, axis=1))
|
mean_time, mean_ci, _ = calculate_confidence_interval(np.mean(all_times, axis=1))
|
||||||
median_time, median_ci, _ = calculate_confidence_interval(np.median(all_times, axis=1))
|
median_time, median_ci, _ = calculate_confidence_interval(np.median(all_times, axis=1))
|
||||||
|
@ -134,6 +134,7 @@ struct ConfidenceInterval
|
|||||||
double mean;
|
double mean;
|
||||||
double confidence;
|
double confidence;
|
||||||
double min;
|
double min;
|
||||||
|
double max;
|
||||||
};
|
};
|
||||||
|
|
||||||
// Helper function to calculate the bootstrap confidence interval
|
// Helper function to calculate the bootstrap confidence interval
|
||||||
@ -161,8 +162,10 @@ ConfidenceInterval confidenceInterval(const std::vector<double> &data,
|
|||||||
double upper_bound = means[(int)((1 + confidence_level) / 2 * num_samples)];
|
double upper_bound = means[(int)((1 + confidence_level) / 2 * num_samples)];
|
||||||
double mean = std::accumulate(means.begin(), means.end(), 0.0) / means.size();
|
double mean = std::accumulate(means.begin(), means.end(), 0.0) / means.size();
|
||||||
|
|
||||||
ConfidenceInterval ci = {
|
ConfidenceInterval ci = {mean,
|
||||||
mean, (upper_bound - lower_bound) / 2, *std::min_element(data.begin(), data.end())};
|
(upper_bound - lower_bound) / 2,
|
||||||
|
*std::min_element(data.begin(), data.end()),
|
||||||
|
*std::max_element(data.begin(), data.end())};
|
||||||
return ci;
|
return ci;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -260,7 +263,7 @@ std::ostream &operator<<(std::ostream &os, Statistics &statistics)
|
|||||||
ConfidenceInterval ops_ci = statistics.ops_per_sec();
|
ConfidenceInterval ops_ci = statistics.ops_per_sec();
|
||||||
|
|
||||||
os << "ops: " << ops_ci.mean << " ± " << ops_ci.confidence << " ops/s. "
|
os << "ops: " << ops_ci.mean << " ± " << ops_ci.confidence << " ops/s. "
|
||||||
<< "best: " << ops_ci.min << "ops/s." << std::endl;
|
<< "best: " << ops_ci.max << "ops/s." << std::endl;
|
||||||
os << "total: " << total_ci.mean << " ± " << total_ci.confidence << "ms. "
|
os << "total: " << total_ci.mean << " ± " << total_ci.confidence << "ms. "
|
||||||
<< "best: " << total_ci.min << "ms." << std::endl;
|
<< "best: " << total_ci.min << "ms." << std::endl;
|
||||||
os << "avg: " << mean_ci.mean << " ± " << mean_ci.confidence << "ms" << std::endl;
|
os << "avg: " << mean_ci.mean << " ± " << mean_ci.confidence << "ms" << std::endl;
|
||||||
|
Loading…
Reference in New Issue
Block a user