Don't pass shared_ptr down to functions

"Don’t pass a smart pointer as a function parameter unless you want to
use or manipulate the smart pointer itself, such as to share or transfer
ownership."

Source:
http://herbsutter.com/2013/06/05/gotw-91-solution-smart-pointer-parameters/
This commit is contained in:
Patrick Niklaus 2016-03-05 18:17:24 +01:00
parent e50bf1062f
commit c8cd89355c
3 changed files with 297 additions and 341 deletions

View File

@ -46,14 +46,13 @@ struct TurnCandidate
}; };
// the entry into the turn analysis // the entry into the turn analysis
std::vector<TurnCandidate> std::vector<TurnCandidate> getTurns(const NodeID from_node,
getTurns(const NodeID from_node, const EdgeID via_eid,
const EdgeID via_eid, const util::NodeBasedDynamicGraph &node_based_graph,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph, const std::vector<QueryNode> &node_info_list,
const std::vector<QueryNode> &node_info_list, const RestrictionMap &restriction_map,
const std::shared_ptr<RestrictionMap const> restriction_map, const std::unordered_set<NodeID> &barrier_nodes,
const std::unordered_set<NodeID> &barrier_nodes, const CompressedEdgeContainer &compressed_edge_container);
const CompressedEdgeContainer &compressed_edge_container);
namespace detail namespace detail
{ {
@ -65,9 +64,9 @@ namespace detail
std::vector<TurnCandidate> std::vector<TurnCandidate>
getTurnCandidates(const NodeID from_node, getTurnCandidates(const NodeID from_node,
const EdgeID via_eid, const EdgeID via_eid,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph, const util::NodeBasedDynamicGraph &node_based_graph,
const std::vector<QueryNode> &node_info_list, const std::vector<QueryNode> &node_info_list,
const std::shared_ptr<RestrictionMap const> restriction_map, const RestrictionMap &restriction_map,
const std::unordered_set<NodeID> &barrier_nodes, const std::unordered_set<NodeID> &barrier_nodes,
const CompressedEdgeContainer &compressed_edge_container); const CompressedEdgeContainer &compressed_edge_container);
@ -84,7 +83,7 @@ std::vector<TurnCandidate>
mergeSegregatedRoads(const NodeID from_node, mergeSegregatedRoads(const NodeID from_node,
const EdgeID via_eid, const EdgeID via_eid,
std::vector<TurnCandidate> turn_candidates, std::vector<TurnCandidate> turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
// TODO distinguish roundabouts and rotaries // TODO distinguish roundabouts and rotaries
// TODO handle bike/walk cases that allow crossing a roundabout! // TODO handle bike/walk cases that allow crossing a roundabout!
@ -92,14 +91,13 @@ mergeSegregatedRoads(const NodeID from_node,
// Processing of roundabouts // Processing of roundabouts
// Produces instructions to enter/exit a roundabout or to stay on it. // Produces instructions to enter/exit a roundabout or to stay on it.
// Performs the distinction between roundabout and rotaries. // Performs the distinction between roundabout and rotaries.
std::vector<TurnCandidate> std::vector<TurnCandidate> handleRoundabouts(const NodeID from,
handleRoundabouts(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const bool on_roundabout,
const bool on_roundabout, const bool can_enter_roundabout,
const bool can_enter_roundabout, const bool can_exit_roundabout,
const bool can_exit_roundabout, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// A Basic junction is a junction not requiring special treatment. It cannot contain anything // A Basic junction is a junction not requiring special treatment. It cannot contain anything
// but streets of lesser priority than trunks and ramps (of any type). No roundabouts or motorway // but streets of lesser priority than trunks and ramps (of any type). No roundabouts or motorway
@ -107,136 +105,122 @@ handleRoundabouts(const NodeID from,
bool isBasicJunction(const NodeID from, bool isBasicJunction(const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates, const std::vector<TurnCandidate> &turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
// Indicates a Junction containing a motoryway // Indicates a Junction containing a motoryway
bool isMotorwayJunction(const NodeID from, bool isMotorwayJunction(const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates, const std::vector<TurnCandidate> &turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
// Decide whether a turn is a turn or a ramp access // Decide whether a turn is a turn or a ramp access
TurnType TurnType findBasicTurnType(const NodeID from,
findBasicTurnType(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const TurnCandidate &candidate,
const TurnCandidate &candidate, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Get the Instruction for an obvious turn // Get the Instruction for an obvious turn
// Instruction will be a silent instruction // Instruction will be a silent instruction
TurnInstruction TurnInstruction getInstructionForObvious(const NodeID from,
getInstructionForObvious(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const TurnCandidate &candidate,
const TurnCandidate &candidate, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Helper Function that decides between NoTurn or NewName // Helper Function that decides between NoTurn or NewName
TurnInstruction TurnInstruction noTurnOrNewName(const NodeID from,
noTurnOrNewName(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const TurnCandidate &candidate,
const TurnCandidate &candidate, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Basic Turn Handling // Basic Turn Handling
// Dead end. // Dead end.
std::vector<TurnCandidate> std::vector<TurnCandidate> handleOneWayTurn(const NodeID from,
handleOneWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Mode Changes, new names... // Mode Changes, new names...
std::vector<TurnCandidate> std::vector<TurnCandidate> handleTwoWayTurn(const NodeID from,
handleTwoWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Forks, T intersections and similar // Forks, T intersections and similar
std::vector<TurnCandidate> std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
handleThreeWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Normal Intersection. Can still contain forks... // Normal Intersection. Can still contain forks...
std::vector<TurnCandidate> std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
handleFourWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Fallback for turns of high complexion // Fallback for turns of high complexion
std::vector<TurnCandidate> std::vector<TurnCandidate> handleComplexTurn(const NodeID from,
handleComplexTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Any Junction containing motorways // Any Junction containing motorways
std::vector<TurnCandidate> std::vector<TurnCandidate>
handleMotorwayJunction(const NodeID from, handleMotorwayJunction(const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates, std::vector<TurnCandidate> turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
// Utility function, setting basic turn types. Prepares for normal turn handling. // Utility function, setting basic turn types. Prepares for normal turn handling.
std::vector<TurnCandidate> std::vector<TurnCandidate> setTurnTypes(const NodeID from,
setTurnTypes(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Utility function to handle direction modifier conflicts if reasonably possible // Utility function to handle direction modifier conflicts if reasonably possible
std::vector<TurnCandidate> std::vector<TurnCandidate> handleConflicts(const NodeID from,
handleConflicts(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Old fallbacks, to be removed // Old fallbacks, to be removed
std::vector<TurnCandidate> std::vector<TurnCandidate> optimizeRamps(const EdgeID via_edge,
optimizeRamps(const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
std::vector<TurnCandidate> std::vector<TurnCandidate> optimizeCandidates(const EdgeID via_eid,
optimizeCandidates(const EdgeID via_eid, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph, const std::vector<QueryNode> &node_info_list);
const std::vector<QueryNode> &node_info_list);
bool isObviousChoice(const EdgeID via_eid, bool isObviousChoice(const EdgeID via_eid,
const std::size_t turn_index, const std::size_t turn_index,
const std::vector<TurnCandidate> &turn_candidates, const std::vector<TurnCandidate> &turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
std::vector<TurnCandidate> std::vector<TurnCandidate> suppressTurns(const EdgeID via_eid,
suppressTurns(const EdgeID via_eid, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// node_u -- (edge_1) --> node_v -- (edge_2) --> node_w // node_u -- (edge_1) --> node_v -- (edge_2) --> node_w
TurnInstruction TurnInstruction AnalyzeTurn(const NodeID node_u,
AnalyzeTurn(const NodeID node_u, const EdgeID edge1,
const EdgeID edge1, const NodeID node_v,
const NodeID node_v, const EdgeID edge2,
const EdgeID edge2, const NodeID node_w,
const NodeID node_w, const double angle,
const double angle, const util::NodeBasedDynamicGraph &node_based_graph);
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
// Assignment of specific turn types // Assignment of specific turn types
void assignFork(const EdgeID via_edge, void assignFork(const EdgeID via_edge,
TurnCandidate &left, TurnCandidate &left,
TurnCandidate &right, TurnCandidate &right,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
void assignFork(const EdgeID via_edge, void assignFork(const EdgeID via_edge,
TurnCandidate &left, TurnCandidate &left,
TurnCandidate &center, TurnCandidate &center,
TurnCandidate &right, TurnCandidate &right,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
} // namespace detail } // namespace detail
} // namespace guidance } // namespace guidance

View File

@ -314,8 +314,8 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
++node_based_edge_counter; ++node_based_edge_counter;
auto turn_candidates = auto turn_candidates =
guidance::getTurns(node_u, edge_from_u, m_node_based_graph, m_node_info_list, guidance::getTurns(node_u, edge_from_u, *m_node_based_graph, m_node_info_list,
m_restriction_map, m_barrier_nodes, m_compressed_edge_container); *m_restriction_map, m_barrier_nodes, m_compressed_edge_container);
const NodeID node_v = m_node_based_graph->GetTarget(edge_from_u); const NodeID node_v = m_node_based_graph->GetTarget(edge_from_u);

View File

@ -54,21 +54,20 @@ struct Localizer
static Localizer localizer; static Localizer localizer;
#define PRINT_DEBUG_CANDIDATES 0 #define PRINT_DEBUG_CANDIDATES 0
std::vector<TurnCandidate> std::vector<TurnCandidate> getTurns(const NodeID from,
getTurns(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const util::NodeBasedDynamicGraph &node_based_graph,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph, const std::vector<QueryNode> &node_info_list,
const std::vector<QueryNode> &node_info_list, const RestrictionMap &restriction_map,
const std::shared_ptr<RestrictionMap const> restriction_map, const std::unordered_set<NodeID> &barrier_nodes,
const std::unordered_set<NodeID> &barrier_nodes, const CompressedEdgeContainer &compressed_edge_container)
const CompressedEdgeContainer &compressed_edge_container)
{ {
localizer.node_info_list = &node_info_list; localizer.node_info_list = &node_info_list;
auto turn_candidates = auto turn_candidates =
detail::getTurnCandidates(from, via_edge, node_based_graph, node_info_list, restriction_map, detail::getTurnCandidates(from, via_edge, node_based_graph, node_info_list, restriction_map,
barrier_nodes, compressed_edge_container); barrier_nodes, compressed_edge_container);
const auto &in_edge_data = node_based_graph->GetEdgeData(via_edge); const auto &in_edge_data = node_based_graph.GetEdgeData(via_edge);
// main priority: roundabouts // main priority: roundabouts
bool on_roundabout = in_edge_data.roundabout; bool on_roundabout = in_edge_data.roundabout;
@ -76,7 +75,7 @@ getTurns(const NodeID from,
bool can_exit_roundabout = false; bool can_exit_roundabout = false;
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
if (node_based_graph->GetEdgeData(candidate.eid).roundabout) if (node_based_graph.GetEdgeData(candidate.eid).roundabout)
{ {
can_enter_roundabout = true; can_enter_roundabout = true;
} }
@ -98,10 +97,6 @@ getTurns(const NodeID from,
if (detail::isMotorwayJunction(from, via_edge, turn_candidates, node_based_graph)) if (detail::isMotorwayJunction(from, via_edge, turn_candidates, node_based_graph))
{ {
// std::cout << "Handling Motorway Junction at " << from << " (" << node_info_list[from].lat
// << ", " << node_info_list[from].lon << ")" << " and " <<
// node_info_list[node_based_graph->GetTarget(via_edge)].lat << " " <<
// node_info_list[node_based_graph->GetTarget(via_edge)].lon << std::endl;
return detail::handleMotorwayJunction(from, via_edge, std::move(turn_candidates), return detail::handleMotorwayJunction(from, via_edge, std::move(turn_candidates),
node_based_graph); node_based_graph);
} }
@ -142,8 +137,8 @@ getTurns(const NodeID from,
std::cout << "Initial Candidates:\n"; std::cout << "Initial Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
turn_candidates = detail::optimizeCandidates(via_edge, std::move(turn_candidates), turn_candidates = detail::optimizeCandidates(via_edge, std::move(turn_candidates),
node_based_graph, node_info_list); node_based_graph, node_info_list);
@ -151,7 +146,7 @@ getTurns(const NodeID from,
std::cout << "Optimized Candidates:\n"; std::cout << "Optimized Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< std::endl; << std::endl;
#endif #endif
turn_candidates = detail::suppressTurns(via_edge, std::move(turn_candidates), node_based_graph); turn_candidates = detail::suppressTurns(via_edge, std::move(turn_candidates), node_based_graph);
@ -159,7 +154,7 @@ getTurns(const NodeID from,
std::cout << "Suppressed Candidates:\n"; std::cout << "Suppressed Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< std::endl; << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
@ -168,41 +163,38 @@ getTurns(const NodeID from,
namespace detail namespace detail
{ {
inline unsigned countValid(const std::vector<TurnCandidate> &turn_candidates) inline std::size_t countValid(const std::vector<TurnCandidate> &turn_candidates)
{ {
unsigned count = 0; return std::count_if(turn_candidates.begin(), turn_candidates.end(),
for (const auto &candidate : turn_candidates) [](const TurnCandidate &candidate)
{ {
if (candidate.valid) return candidate.valid;
++count; });
} }
return count;
};
std::vector<TurnCandidate> std::vector<TurnCandidate> handleRoundabouts(const NodeID from,
handleRoundabouts(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const bool on_roundabout,
const bool on_roundabout, const bool can_enter_roundabout,
const bool can_enter_roundabout, const bool can_exit_roundabout,
const bool can_exit_roundabout, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)from; (void)from;
// TODO requires differentiation between roundabouts and rotaries // TODO requires differentiation between roundabouts and rotaries
// detect via radius (get via circle through three vertices) // detect via radius (get via circle through three vertices)
NodeID node_v = node_based_graph->GetTarget(via_edge); NodeID node_v = node_based_graph.GetTarget(via_edge);
if (on_roundabout) if (on_roundabout)
{ {
// Shoule hopefully have only a single exit and continue // Shoule hopefully have only a single exit and continue
// at least for cars. How about bikes? // at least for cars. How about bikes?
for (auto &candidate : turn_candidates) for (auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (out_data.roundabout) if (out_data.roundabout)
{ {
// TODO can forks happen in roundabouts? E.g. required lane changes // TODO can forks happen in roundabouts? E.g. required lane changes
if (1 == node_based_graph->GetDirectedOutDegree(node_v)) if (1 == node_based_graph.GetDirectedOutDegree(node_v))
{ {
// No turn possible. // No turn possible.
candidate.instruction = TurnInstruction::NO_TURN(); candidate.instruction = TurnInstruction::NO_TURN();
@ -223,8 +215,8 @@ handleRoundabouts(const NodeID from,
std::cout << "On Roundabout Candidates:\n"; std::cout << "On Roundabout Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
@ -236,7 +228,7 @@ handleRoundabouts(const NodeID from,
{ {
if (!candidate.valid) if (!candidate.valid)
continue; continue;
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (out_data.roundabout) if (out_data.roundabout)
{ {
candidate.instruction = candidate.instruction =
@ -259,8 +251,8 @@ handleRoundabouts(const NodeID from,
std::cout << "Into Roundabout Candidates:\n"; std::cout << "Into Roundabout Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
@ -271,31 +263,28 @@ inline bool isMotorwayClass(FunctionalRoadClass road_class)
return road_class == FunctionalRoadClass::MOTORWAY || road_class == FunctionalRoadClass::TRUNK; return road_class == FunctionalRoadClass::MOTORWAY || road_class == FunctionalRoadClass::TRUNK;
} }
inline bool inline bool isMotorwayClass(EdgeID eid, const util::NodeBasedDynamicGraph &node_based_graph)
isMotorwayClass(EdgeID eid,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
return isMotorwayClass(node_based_graph->GetEdgeData(eid).road_classification.road_class); return isMotorwayClass(node_based_graph.GetEdgeData(eid).road_classification.road_class);
} }
inline bool isRampClass(EdgeID eid, inline bool isRampClass(EdgeID eid, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
return isRampClass(node_based_graph->GetEdgeData(eid).road_classification.road_class); return isRampClass(node_based_graph.GetEdgeData(eid).road_classification.road_class);
} }
inline std::vector<TurnCandidate> fallbackTurnAssignmentMotorway( inline std::vector<TurnCandidate>
std::vector<TurnCandidate> turn_candidates, fallbackTurnAssignmentMotorway(std::vector<TurnCandidate> turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
for (auto &candidate : turn_candidates) for (auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "Candidate: " << candidate.toString() << " Name: " << out_data.name_id << "Candidate: " << candidate.toString() << " Name: " << out_data.name_id
<< " Road Class: " << (int)out_data.road_classification.road_class << " Road Class: " << (int)out_data.road_classification.road_class
<< " At: " << localizer(node_based_graph->GetTarget(candidate.eid)); << " At: " << localizer(node_based_graph.GetTarget(candidate.eid));
if (!candidate.valid) if (!candidate.valid)
continue; continue;
@ -314,18 +303,17 @@ inline std::vector<TurnCandidate> fallbackTurnAssignmentMotorway(
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleFromMotorway(const NodeID from,
handleFromMotorway(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)from; (void)from;
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
BOOST_ASSERT(isMotorwayClass(in_data.road_classification.road_class)); BOOST_ASSERT(isMotorwayClass(in_data.road_classification.road_class));
const auto countExitingMotorways = const auto countExitingMotorways =
[node_based_graph](const std::vector<TurnCandidate> &turn_candidates) [&node_based_graph](const std::vector<TurnCandidate> &turn_candidates)
{ {
unsigned count = 0; unsigned count = 0;
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
@ -338,11 +326,11 @@ handleFromMotorway(const NodeID from,
// find the angle that continues on our current highway // find the angle that continues on our current highway
const auto getContinueAngle = const auto getContinueAngle =
[in_data, node_based_graph](const std::vector<TurnCandidate> &turn_candidates) [in_data, &node_based_graph](const std::vector<TurnCandidate> &turn_candidates)
{ {
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (candidate.angle != 0 && in_data.name_id == out_data.name_id && if (candidate.angle != 0 && in_data.name_id == out_data.name_id &&
in_data.name_id != 0 && isMotorwayClass(out_data.road_classification.road_class)) in_data.name_id != 0 && isMotorwayClass(out_data.road_classification.road_class))
return candidate.angle; return candidate.angle;
@ -351,13 +339,13 @@ handleFromMotorway(const NodeID from,
}; };
const auto getMostLikelyContinue = const auto getMostLikelyContinue =
[in_data, node_based_graph](const std::vector<TurnCandidate> &turn_candidates) [in_data, &node_based_graph](const std::vector<TurnCandidate> &turn_candidates)
{ {
double angle = turn_candidates[0].angle; double angle = turn_candidates[0].angle;
double best = 180; double best = 180;
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (isMotorwayClass(out_data.road_classification.road_class) && if (isMotorwayClass(out_data.road_classification.road_class) &&
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < best) angularDeviation(candidate.angle, STRAIGHT_ANGLE) < best)
{ {
@ -407,10 +395,10 @@ handleFromMotorway(const NodeID from,
getTurnDirection(turn_candidates[2].angle)}; getTurnDirection(turn_candidates[2].angle)};
} }
} }
else if (countValid(turn_candidates)) // check whether turns exist at all else if (countValid(turn_candidates) > 0) // check whether turns exist at all
{ {
// FALLBACK, this should hopefully never be reached // FALLBACK, this should hopefully never be reached
auto coord = localizer(node_based_graph->GetTarget(via_edge)); auto coord = localizer(node_based_graph.GetTarget(via_edge));
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "Fallback reached from motorway at " << std::setprecision(12) << "Fallback reached from motorway at " << std::setprecision(12)
<< toFloating(coord.lat) << " " << toFloating(coord.lon) << ", no continue angle, " << toFloating(coord.lat) << " " << toFloating(coord.lon) << ", no continue angle, "
@ -493,7 +481,7 @@ handleFromMotorway(const NodeID from,
getInstructionForObvious(from, via_edge, turn_candidates[1], node_based_graph); getInstructionForObvious(from, via_edge, turn_candidates[1], node_based_graph);
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "Disabled U-Turn on a freeway at " << "Disabled U-Turn on a freeway at "
<< localizer(node_based_graph->GetTarget(via_edge)); << localizer(node_based_graph.GetTarget(via_edge));
turn_candidates[0].valid = false; // UTURN on the freeway turn_candidates[0].valid = false; // UTURN on the freeway
} }
else if (exiting_motorways == 2) else if (exiting_motorways == 2)
@ -551,7 +539,7 @@ handleFromMotorway(const NodeID from,
} }
else else
{ {
auto coord = localizer(node_based_graph->GetTarget(via_edge)); auto coord = localizer(node_based_graph.GetTarget(via_edge));
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "Found motorway junction with more than " << "Found motorway junction with more than "
"2 exiting motorways or additional ramps at " "2 exiting motorways or additional ramps at "
@ -566,19 +554,18 @@ handleFromMotorway(const NodeID from,
std::cout << "From Motorway Candidates:\n"; std::cout << "From Motorway Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
handleMotorwayRamp(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
unsigned num_valid_turns = countValid(turn_candidates); auto num_valid_turns = countValid(turn_candidates);
// ramp straight into a motorway/ramp // ramp straight into a motorway/ramp
if (turn_candidates.size() == 2 && num_valid_turns == 1) if (turn_candidates.size() == 2 && num_valid_turns == 1)
{ {
@ -662,7 +649,7 @@ handleMotorwayRamp(const NodeID from,
// M R // M R
// | / // | /
// R // R
if (isMotorwayClass(node_based_graph->GetEdgeData(turn_candidates[1].eid) if (isMotorwayClass(node_based_graph.GetEdgeData(turn_candidates[1].eid)
.road_classification.road_class)) .road_classification.road_class))
{ {
turn_candidates[1].instruction = {TurnType::Merge, turn_candidates[1].instruction = {TurnType::Merge,
@ -686,7 +673,7 @@ handleMotorwayRamp(const NodeID from,
bool passed_highway_entry = false; bool passed_highway_entry = false;
for (auto &candidate : turn_candidates) for (auto &candidate : turn_candidates)
{ {
const auto &edge_data = node_based_graph->GetEdgeData(candidate.eid); const auto &edge_data = node_based_graph.GetEdgeData(candidate.eid);
if (!candidate.valid && isMotorwayClass(edge_data.road_classification.road_class)) if (!candidate.valid && isMotorwayClass(edge_data.road_classification.road_class))
{ {
passed_highway_entry = true; passed_highway_entry = true;
@ -716,8 +703,8 @@ handleMotorwayRamp(const NodeID from,
std::cout << "Onto Motorway Candidates:\n"; std::cout << "Onto Motorway Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
@ -726,12 +713,12 @@ std::vector<TurnCandidate>
handleMotorwayJunction(const NodeID from, handleMotorwayJunction(const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates, std::vector<TurnCandidate> turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
(void)from; (void)from;
// BOOST_ASSERT(!turn_candidates[0].valid); //This fails due to @themarex handling of dead end // BOOST_ASSERT(!turn_candidates[0].valid); //This fails due to @themarex handling of dead end
// streets // streets
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
// coming from motorway // coming from motorway
if (isMotorwayClass(in_data.road_classification.road_class)) if (isMotorwayClass(in_data.road_classification.road_class))
@ -748,20 +735,20 @@ handleMotorwayJunction(const NodeID from,
bool isBasicJunction(const NodeID from, bool isBasicJunction(const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates, const std::vector<TurnCandidate> &turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
(void)from, (void)turn_candidates; (void)from, (void)turn_candidates;
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (out_data.road_classification.road_class == FunctionalRoadClass::MOTORWAY || if (out_data.road_classification.road_class == FunctionalRoadClass::MOTORWAY ||
out_data.road_classification.road_class == FunctionalRoadClass::TRUNK) out_data.road_classification.road_class == FunctionalRoadClass::TRUNK)
return false; return false;
} }
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
return in_data.road_classification.road_class != FunctionalRoadClass::MOTORWAY && return in_data.road_classification.road_class != FunctionalRoadClass::MOTORWAY &&
in_data.road_classification.road_class != FunctionalRoadClass::TRUNK; in_data.road_classification.road_class != FunctionalRoadClass::TRUNK;
/* /*
@ -772,7 +759,7 @@ bool isBasicJunction(const NodeID from,
std::size_t ramp_count = 0; std::size_t ramp_count = 0;
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (isRampClass(out_data.road_classification.road_class)) if (isRampClass(out_data.road_classification.road_class))
ramp_count++; ramp_count++;
} }
@ -784,7 +771,7 @@ bool isBasicJunction(const NodeID from,
bool isMotorwayJunction(const NodeID from, bool isMotorwayJunction(const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates, const std::vector<TurnCandidate> &turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
(void)from; (void)from;
@ -793,7 +780,7 @@ bool isMotorwayJunction(const NodeID from,
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
// not merging or forking? // not merging or forking?
if ((angularDeviation(candidate.angle, 0) > 35 && if ((angularDeviation(candidate.angle, 0) > 35 &&
angularDeviation(candidate.angle, 180) > 35) || angularDeviation(candidate.angle, 180) > 35) ||
@ -812,22 +799,21 @@ bool isMotorwayJunction(const NodeID from,
if (has_normal_roads) if (has_normal_roads)
return false; return false;
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
return has_motorway || return has_motorway ||
in_data.road_classification.road_class == FunctionalRoadClass::MOTORWAY || in_data.road_classification.road_class == FunctionalRoadClass::MOTORWAY ||
in_data.road_classification.road_class == FunctionalRoadClass::TRUNK; in_data.road_classification.road_class == FunctionalRoadClass::TRUNK;
} }
TurnType TurnType findBasicTurnType(const NodeID from,
findBasicTurnType(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const TurnCandidate &candidate,
const TurnCandidate &candidate, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)from; // FIXME unused (void)from; // FIXME unused
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
bool on_ramp = isRampClass(in_data.road_classification.road_class); bool on_ramp = isRampClass(in_data.road_classification.road_class);
(void)on_ramp; // FIXME unused (void)on_ramp; // FIXME unused
@ -845,16 +831,15 @@ findBasicTurnType(const NodeID from,
return TurnType::Turn; return TurnType::Turn;
} }
TurnInstruction TurnInstruction noTurnOrNewName(const NodeID from,
noTurnOrNewName(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const TurnCandidate &candidate,
const TurnCandidate &candidate, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)from; (void)from;
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (in_data.name_id == out_data.name_id) if (in_data.name_id == out_data.name_id)
{ {
if (angularDeviation(candidate.angle, 0) > 0.01) if (angularDeviation(candidate.angle, 0) > 0.01)
@ -868,11 +853,10 @@ noTurnOrNewName(const NodeID from,
} }
} }
TurnInstruction TurnInstruction getInstructionForObvious(const NodeID from,
getInstructionForObvious(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, const TurnCandidate &candidate,
const TurnCandidate &candidate, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
if (findBasicTurnType(from, via_edge, candidate, node_based_graph) == TurnType::Turn) if (findBasicTurnType(from, via_edge, candidate, node_based_graph) == TurnType::Turn)
@ -885,11 +869,10 @@ getInstructionForObvious(const NodeID from,
} }
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleOneWayTurn(const NodeID from,
handleOneWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
BOOST_ASSERT(turn_candidates[0].angle < 0.001); BOOST_ASSERT(turn_candidates[0].angle < 0.001);
(void)from, (void)via_edge, (void)node_based_graph; (void)from, (void)via_edge, (void)node_based_graph;
@ -903,17 +886,16 @@ handleOneWayTurn(const NodeID from,
std::cout << "Basic (one) Turn Candidates:\n"; std::cout << "Basic (one) Turn Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleTwoWayTurn(const NodeID from,
handleTwoWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
BOOST_ASSERT(turn_candidates[0].angle < 0.001); BOOST_ASSERT(turn_candidates[0].angle < 0.001);
@ -924,17 +906,16 @@ handleTwoWayTurn(const NodeID from,
std::cout << "Basic Two Turns Candidates:\n"; std::cout << "Basic Two Turns Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
handleThreeWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
BOOST_ASSERT(turn_candidates[0].angle < 0.001); BOOST_ASSERT(turn_candidates[0].angle < 0.001);
const auto isObviousOfTwo = [](const TurnCandidate turn, const TurnCandidate other) const auto isObviousOfTwo = [](const TurnCandidate turn, const TurnCandidate other)
@ -1080,9 +1061,9 @@ handleThreeWayTurn(const NodeID from,
DirectionModifier::Right}; DirectionModifier::Right};
} }
// merge onto a through street // merge onto a through street
else if (INVALID_NAME_ID != node_based_graph->GetEdgeData(turn_candidates[1].eid).name_id && else if (INVALID_NAME_ID != node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id &&
node_based_graph->GetEdgeData(turn_candidates[1].eid).name_id == node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id ==
node_based_graph->GetEdgeData(turn_candidates[2].eid).name_id) node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id)
{ {
const auto findTurn = [isObviousOfTwo](const TurnCandidate turn, const auto findTurn = [isObviousOfTwo](const TurnCandidate turn,
const TurnCandidate other) -> TurnInstruction const TurnCandidate other) -> TurnInstruction
@ -1095,9 +1076,9 @@ handleThreeWayTurn(const NodeID from,
} }
// other street merges from the left // other street merges from the left
else if (INVALID_NAME_ID != node_based_graph->GetEdgeData(via_edge).name_id && else if (INVALID_NAME_ID != node_based_graph.GetEdgeData(via_edge).name_id &&
node_based_graph->GetEdgeData(via_edge).name_id == node_based_graph.GetEdgeData(via_edge).name_id ==
node_based_graph->GetEdgeData(turn_candidates[1].eid).name_id) node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id)
{ {
if (isObviousOfTwo(turn_candidates[1], turn_candidates[2])) if (isObviousOfTwo(turn_candidates[1], turn_candidates[2]))
{ {
@ -1113,9 +1094,9 @@ handleThreeWayTurn(const NodeID from,
getTurnDirection(turn_candidates[2].angle)}; getTurnDirection(turn_candidates[2].angle)};
} }
// other street merges from the right // other street merges from the right
else if (INVALID_NAME_ID != node_based_graph->GetEdgeData(via_edge).name_id && else if (INVALID_NAME_ID != node_based_graph.GetEdgeData(via_edge).name_id &&
node_based_graph->GetEdgeData(via_edge).name_id == node_based_graph.GetEdgeData(via_edge).name_id ==
node_based_graph->GetEdgeData(turn_candidates[2].eid).name_id) node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id)
{ {
if (isObviousOfTwo(turn_candidates[2], turn_candidates[1])) if (isObviousOfTwo(turn_candidates[2], turn_candidates[1]))
{ {
@ -1132,10 +1113,10 @@ handleThreeWayTurn(const NodeID from,
} }
else else
{ {
const unsigned in_name_id = node_based_graph->GetEdgeData(via_edge).name_id; const unsigned in_name_id = node_based_graph.GetEdgeData(via_edge).name_id;
const unsigned out_names[2] = { const unsigned out_names[2] = {
node_based_graph->GetEdgeData(turn_candidates[1].eid).name_id, node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id,
node_based_graph->GetEdgeData(turn_candidates[2].eid).name_id}; node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id};
if (isObviousOfTwo(turn_candidates[1], turn_candidates[2])) if (isObviousOfTwo(turn_candidates[1], turn_candidates[2]))
{ {
turn_candidates[1].instruction = { turn_candidates[1].instruction = {
@ -1173,17 +1154,16 @@ handleThreeWayTurn(const NodeID from,
std::cout << "Basic Turn Candidates:\n"; std::cout << "Basic Turn Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
handleFourWayTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
static int fallback_count = 0; static int fallback_count = 0;
// basic turn, or slightly rotated basic turn, has straight ANGLE // basic turn, or slightly rotated basic turn, has straight ANGLE
@ -1249,17 +1229,17 @@ handleFourWayTurn(const NodeID from,
{ {
if (fallback_count++ < 10) if (fallback_count++ < 10)
{ {
const auto coord = localizer(node_based_graph->GetTarget(via_edge)); const auto coord = localizer(node_based_graph.GetTarget(via_edge));
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "Resolved to keep fallback on four way turn assignment at " << "Resolved to keep fallback on four way turn assignment at "
<< std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon); << std::setprecision(12) << toFloating(coord.lat) << " " << toFloating(coord.lon);
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
const auto &out_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "Candidate: " << candidate.toString() << " Name: " << out_data.name_id << "Candidate: " << candidate.toString() << " Name: " << out_data.name_id
<< " Road Class: " << (int)out_data.road_classification.road_class << " Road Class: " << (int)out_data.road_classification.road_class
<< " At: " << localizer(node_based_graph->GetTarget(candidate.eid)); << " At: " << localizer(node_based_graph.GetTarget(candidate.eid));
} }
} }
} }
@ -1267,17 +1247,16 @@ handleFourWayTurn(const NodeID from,
std::cout << "Basic Turn Candidates:\n"; std::cout << "Basic Turn Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleComplexTurn(const NodeID from,
handleComplexTurn(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)from; // FIXME unused (void)from; // FIXME unused
(void)via_edge; // FIXME unused (void)via_edge; // FIXME unused
@ -1286,26 +1265,25 @@ handleComplexTurn(const NodeID from,
std::cout << "Basic Turn Candidates:\n"; std::cout << "Basic Turn Candidates:\n";
for (auto tc : turn_candidates) for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " " std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class << (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph->GetEdgeData(tc.eid).name_id << std::endl; << " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif #endif
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> setTurnTypes(const NodeID from,
setTurnTypes(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
NodeID turn_node = node_based_graph->GetTarget(via_edge); NodeID turn_node = node_based_graph.GetTarget(via_edge);
for (auto &candidate : turn_candidates) for (auto &candidate : turn_candidates)
{ {
if (!candidate.valid) if (!candidate.valid)
continue; continue;
const EdgeID onto_edge = candidate.eid; const EdgeID onto_edge = candidate.eid;
const NodeID to_node = node_based_graph->GetTarget(onto_edge); const NodeID to_node = node_based_graph.GetTarget(onto_edge);
auto turn = AnalyzeTurn(from, via_edge, turn_node, onto_edge, to_node, candidate.angle, auto turn = AnalyzeTurn(from, via_edge, turn_node, onto_edge, to_node, candidate.angle,
node_based_graph); node_based_graph);
@ -1317,20 +1295,19 @@ setTurnTypes(const NodeID from,
return turn_candidates; return turn_candidates;
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> optimizeRamps(const EdgeID via_edge,
optimizeRamps(const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
EdgeID continue_eid = SPECIAL_EDGEID; EdgeID continue_eid = SPECIAL_EDGEID;
double continue_angle = 0; double continue_angle = 0;
const auto &in_edge_data = node_based_graph->GetEdgeData(via_edge); const auto &in_edge_data = node_based_graph.GetEdgeData(via_edge);
for (auto &candidate : turn_candidates) for (auto &candidate : turn_candidates)
{ {
if (candidate.instruction.direction_modifier == DirectionModifier::UTurn) if (candidate.instruction.direction_modifier == DirectionModifier::UTurn)
continue; continue;
const auto &out_edge_data = node_based_graph->GetEdgeData(candidate.eid); const auto &out_edge_data = node_based_graph.GetEdgeData(candidate.eid);
if (out_edge_data.name_id == in_edge_data.name_id) if (out_edge_data.name_id == in_edge_data.name_id)
{ {
continue_eid = candidate.eid; continue_eid = candidate.eid;
@ -1365,11 +1342,10 @@ optimizeRamps(const EdgeID via_edge,
} }
// requires sorted candidates // requires sorted candidates
std::vector<TurnCandidate> std::vector<TurnCandidate> optimizeCandidates(const EdgeID via_eid,
optimizeCandidates(const EdgeID via_eid, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph, const std::vector<QueryNode> &node_info_list)
const std::vector<QueryNode> &node_info_list)
{ {
BOOST_ASSERT_MSG(std::is_sorted(turn_candidates.begin(), turn_candidates.end(), BOOST_ASSERT_MSG(std::is_sorted(turn_candidates.begin(), turn_candidates.end(),
[](const TurnCandidate &left, const TurnCandidate &right) [](const TurnCandidate &left, const TurnCandidate &right)
@ -1417,8 +1393,8 @@ optimizeCandidates(const EdgeID via_eid,
{ {
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "[warning] conflicting turn angles, identical road duplicated? " << "[warning] conflicting turn angles, identical road duplicated? "
<< std::setprecision(12) << node_info_list[node_based_graph->GetTarget(via_eid)].lat << std::setprecision(12) << node_info_list[node_based_graph.GetTarget(via_eid)].lat
<< " " << node_info_list[node_based_graph->GetTarget(via_eid)].lon << std::endl; << " " << node_info_list[node_based_graph.GetTarget(via_eid)].lon << std::endl;
} }
if (isConflict(turn.instruction, left.instruction)) if (isConflict(turn.instruction, left.instruction))
{ {
@ -1525,7 +1501,7 @@ optimizeCandidates(const EdgeID via_eid,
// Handle it as best as possible and keep the rest of the conflicting turns // Handle it as best as possible and keep the rest of the conflicting turns
if (conflict_size > 3) if (conflict_size > 3)
{ {
NodeID conflict_location = node_based_graph->GetTarget(via_eid); NodeID conflict_location = node_based_graph.GetTarget(via_eid);
util::SimpleLogger().Write(logDEBUG) util::SimpleLogger().Write(logDEBUG)
<< "[warning] found conflict larget than size three at " << "[warning] found conflict larget than size three at "
<< node_info_list[conflict_location].lat << ", " << node_info_list[conflict_location].lat << ", "
@ -1569,7 +1545,7 @@ optimizeCandidates(const EdgeID via_eid,
bool isObviousChoice(const EdgeID via_eid, bool isObviousChoice(const EdgeID via_eid,
const std::size_t turn_index, const std::size_t turn_index,
const std::vector<TurnCandidate> &turn_candidates, const std::vector<TurnCandidate> &turn_candidates,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
const auto getLeft = [&turn_candidates](std::size_t index) const auto getLeft = [&turn_candidates](std::size_t index)
{ {
@ -1580,8 +1556,8 @@ bool isObviousChoice(const EdgeID via_eid,
return (index + turn_candidates.size() - 1) % turn_candidates.size(); return (index + turn_candidates.size() - 1) % turn_candidates.size();
}; };
const auto &candidate = turn_candidates[turn_index]; const auto &candidate = turn_candidates[turn_index];
const EdgeData &in_data = node_based_graph->GetEdgeData(via_eid); const EdgeData &in_data = node_based_graph.GetEdgeData(via_eid);
const EdgeData &out_data = node_based_graph->GetEdgeData(candidate.eid); const EdgeData &out_data = node_based_graph.GetEdgeData(candidate.eid);
const auto &candidate_to_the_left = turn_candidates[getLeft(turn_index)]; const auto &candidate_to_the_left = turn_candidates[getLeft(turn_index)];
const auto &candidate_to_the_right = turn_candidates[getRight(turn_index)]; const auto &candidate_to_the_right = turn_candidates[getRight(turn_index)];
@ -1600,7 +1576,7 @@ bool isObviousChoice(const EdgeID via_eid,
}; };
// only valid turn // only valid turn
if (!isLowPriorityRoadClass( if (!isLowPriorityRoadClass(
node_based_graph->GetEdgeData(candidate.eid).road_classification.road_class)) node_based_graph.GetEdgeData(candidate.eid).road_classification.road_class))
{ {
bool is_only_normal_road = true; bool is_only_normal_road = true;
// TODO find out why this can also be reached for non-u-turns // TODO find out why this can also be reached for non-u-turns
@ -1608,7 +1584,7 @@ bool isObviousChoice(const EdgeID via_eid,
{ {
if (i == turn_index || turn_candidates[i].angle == 0) // skip self and u-turn if (i == turn_index || turn_candidates[i].angle == 0) // skip self and u-turn
continue; continue;
if (!isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[i].eid) if (!isLowPriorityRoadClass(node_based_graph.GetEdgeData(turn_candidates[i].eid)
.road_classification.road_class)) .road_classification.road_class))
{ {
is_only_normal_road = false; is_only_normal_road = false;
@ -1629,23 +1605,22 @@ bool isObviousChoice(const EdgeID via_eid,
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE / 2); angularDeviation(candidate.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE / 2);
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> suppressTurns(const EdgeID via_eid,
suppressTurns(const EdgeID via_eid, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
if (turn_candidates.size() == 3) if (turn_candidates.size() == 3)
{ {
BOOST_ASSERT(turn_candidates[0].instruction.direction_modifier == DirectionModifier::UTurn); BOOST_ASSERT(turn_candidates[0].instruction.direction_modifier == DirectionModifier::UTurn);
if (isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[1].eid) if (isLowPriorityRoadClass(node_based_graph.GetEdgeData(turn_candidates[1].eid)
.road_classification.road_class) && .road_classification.road_class) &&
!isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[2].eid) !isLowPriorityRoadClass(node_based_graph.GetEdgeData(turn_candidates[2].eid)
.road_classification.road_class)) .road_classification.road_class))
{ {
if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE) if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
{ {
if (node_based_graph->GetEdgeData(turn_candidates[2].eid).name_id == if (node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id ==
node_based_graph->GetEdgeData(via_eid).name_id) node_based_graph.GetEdgeData(via_eid).name_id)
{ {
turn_candidates[2].instruction = TurnInstruction::NO_TURN(); turn_candidates[2].instruction = TurnInstruction::NO_TURN();
} }
@ -1656,15 +1631,15 @@ suppressTurns(const EdgeID via_eid,
return turn_candidates; return turn_candidates;
} }
} }
else if (isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[2].eid) else if (isLowPriorityRoadClass(node_based_graph.GetEdgeData(turn_candidates[2].eid)
.road_classification.road_class) && .road_classification.road_class) &&
!isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[1].eid) !isLowPriorityRoadClass(node_based_graph.GetEdgeData(turn_candidates[1].eid)
.road_classification.road_class)) .road_classification.road_class))
{ {
if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE) if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
{ {
if (node_based_graph->GetEdgeData(turn_candidates[1].eid).name_id == if (node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id ==
node_based_graph->GetEdgeData(via_eid).name_id) node_based_graph.GetEdgeData(via_eid).name_id)
{ {
turn_candidates[1].instruction = TurnInstruction::NO_TURN(); turn_candidates[1].instruction = TurnInstruction::NO_TURN();
} }
@ -1693,13 +1668,13 @@ suppressTurns(const EdgeID via_eid,
return (index + turn_candidates.size() - 1) % turn_candidates.size(); return (index + turn_candidates.size() - 1) % turn_candidates.size();
}; };
const EdgeData &in_data = node_based_graph->GetEdgeData(via_eid); const EdgeData &in_data = node_based_graph.GetEdgeData(via_eid);
bool has_obvious_with_same_name = false; bool has_obvious_with_same_name = false;
double obvious_with_same_name_angle = 0; double obvious_with_same_name_angle = 0;
for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index) for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index)
{ {
if (node_based_graph->GetEdgeData(turn_candidates[turn_index].eid).name_id == if (node_based_graph.GetEdgeData(turn_candidates[turn_index].eid).name_id ==
in_data.name_id && in_data.name_id &&
isObviousChoice(via_eid, turn_index, turn_candidates, node_based_graph)) isObviousChoice(via_eid, turn_index, turn_candidates, node_based_graph))
{ {
@ -1715,7 +1690,7 @@ suppressTurns(const EdgeID via_eid,
if (!isBasic(candidate.instruction.type)) if (!isBasic(candidate.instruction.type))
continue; continue;
const EdgeData &out_data = node_based_graph->GetEdgeData(candidate.eid); const EdgeData &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (out_data.name_id == in_data.name_id && in_data.name_id != 0 && if (out_data.name_id == in_data.name_id && in_data.name_id != 0 &&
candidate.instruction.direction_modifier != DirectionModifier::UTurn && candidate.instruction.direction_modifier != DirectionModifier::UTurn &&
!has_obvious_with_same_name) !has_obvious_with_same_name)
@ -1789,26 +1764,26 @@ suppressTurns(const EdgeID via_eid,
std::vector<TurnCandidate> std::vector<TurnCandidate>
getTurnCandidates(const NodeID from_node, getTurnCandidates(const NodeID from_node,
const EdgeID via_eid, const EdgeID via_eid,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph, const util::NodeBasedDynamicGraph &node_based_graph,
const std::vector<QueryNode> &node_info_list, const std::vector<QueryNode> &node_info_list,
const std::shared_ptr<RestrictionMap const> restriction_map, const RestrictionMap &restriction_map,
const std::unordered_set<NodeID> &barrier_nodes, const std::unordered_set<NodeID> &barrier_nodes,
const CompressedEdgeContainer &compressed_edge_container) const CompressedEdgeContainer &compressed_edge_container)
{ {
std::vector<TurnCandidate> turn_candidates; std::vector<TurnCandidate> turn_candidates;
const NodeID turn_node = node_based_graph->GetTarget(via_eid); const NodeID turn_node = node_based_graph.GetTarget(via_eid);
const NodeID only_restriction_to_node = const NodeID only_restriction_to_node =
restriction_map->CheckForEmanatingIsOnlyTurn(from_node, turn_node); restriction_map.CheckForEmanatingIsOnlyTurn(from_node, turn_node);
const bool is_barrier_node = barrier_nodes.find(turn_node) != barrier_nodes.end(); const bool is_barrier_node = barrier_nodes.find(turn_node) != barrier_nodes.end();
for (const EdgeID onto_edge : node_based_graph->GetAdjacentEdgeRange(turn_node)) for (const EdgeID onto_edge : node_based_graph.GetAdjacentEdgeRange(turn_node))
{ {
bool turn_is_valid = true; bool turn_is_valid = true;
if (node_based_graph->GetEdgeData(onto_edge).reversed) if (node_based_graph.GetEdgeData(onto_edge).reversed)
{ {
turn_is_valid = false; turn_is_valid = false;
} }
const NodeID to_node = node_based_graph->GetTarget(onto_edge); const NodeID to_node = node_based_graph.GetTarget(onto_edge);
if (turn_is_valid && (only_restriction_to_node != SPECIAL_NODEID) && if (turn_is_valid && (only_restriction_to_node != SPECIAL_NODEID) &&
(to_node != only_restriction_to_node)) (to_node != only_restriction_to_node))
@ -1830,14 +1805,14 @@ getTurnCandidates(const NodeID from_node,
} }
else else
{ {
if (from_node == to_node && node_based_graph->GetOutDegree(turn_node) > 1) if (from_node == to_node && node_based_graph.GetOutDegree(turn_node) > 1)
{ {
auto number_of_emmiting_bidirectional_edges = 0; auto number_of_emmiting_bidirectional_edges = 0;
for (auto edge : node_based_graph->GetAdjacentEdgeRange(turn_node)) for (auto edge : node_based_graph.GetAdjacentEdgeRange(turn_node))
{ {
auto target = node_based_graph->GetTarget(edge); auto target = node_based_graph.GetTarget(edge);
auto reverse_edge = node_based_graph->FindEdge(target, turn_node); auto reverse_edge = node_based_graph.FindEdge(target, turn_node);
if (!node_based_graph->GetEdgeData(reverse_edge).reversed) if (!node_based_graph.GetEdgeData(reverse_edge).reversed)
{ {
++number_of_emmiting_bidirectional_edges; ++number_of_emmiting_bidirectional_edges;
} }
@ -1853,7 +1828,7 @@ getTurnCandidates(const NodeID from_node,
// only add an edge if turn is not a U-turn except when it is // only add an edge if turn is not a U-turn except when it is
// at the end of a dead-end street // at the end of a dead-end street
if (restriction_map->CheckIfTurnIsRestricted(from_node, turn_node, to_node) && if (restriction_map.CheckIfTurnIsRestricted(from_node, turn_node, to_node) &&
(only_restriction_to_node == SPECIAL_NODEID) && (to_node != only_restriction_to_node)) (only_restriction_to_node == SPECIAL_NODEID) && (to_node != only_restriction_to_node))
{ {
// We are at an only_-restriction but not at the right turn. // We are at an only_-restriction but not at the right turn.
@ -1884,11 +1859,10 @@ getTurnCandidates(const NodeID from_node,
return mergeSegregatedRoads(from_node, via_eid, std::move(turn_candidates), node_based_graph); return mergeSegregatedRoads(from_node, via_eid, std::move(turn_candidates), node_based_graph);
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> mergeSegregatedRoads(const NodeID from_node,
mergeSegregatedRoads(const NodeID from_node, const EdgeID via_eid,
const EdgeID via_eid, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)from_node; // FIXME (void)from_node; // FIXME
(void)via_eid; // FIXME (void)via_eid; // FIXME
@ -1912,8 +1886,8 @@ mergeSegregatedRoads(const NodeID from_node,
const auto mergable = [&](std::size_t first, std::size_t second) -> bool const auto mergable = [&](std::size_t first, std::size_t second) -> bool
{ {
const auto &first_data = node_based_graph->GetEdgeData(turn_candidates[first].eid); const auto &first_data = node_based_graph.GetEdgeData(turn_candidates[first].eid);
const auto &second_data = node_based_graph->GetEdgeData(turn_candidates[second].eid); const auto &second_data = node_based_graph.GetEdgeData(turn_candidates[second].eid);
#if PRINT_SEGREGATION_INFO #if PRINT_SEGREGATION_INFO
std::cout << "First: " << first_data.name_id << " " << first_data.travel_mode << " " std::cout << "First: " << first_data.name_id << " " << first_data.travel_mode << " "
<< first_data.road_classification.road_class << " " << first_data.road_classification.road_class << " "
@ -2016,18 +1990,17 @@ mergeSegregatedRoads(const NodeID from_node,
} }
// node_u -- (edge_1) --> node_v -- (edge_2) --> node_w // node_u -- (edge_1) --> node_v -- (edge_2) --> node_w
TurnInstruction TurnInstruction AnalyzeTurn(const NodeID node_u,
AnalyzeTurn(const NodeID node_u, const EdgeID edge1,
const EdgeID edge1, const NodeID node_v,
const NodeID node_v, const EdgeID edge2,
const EdgeID edge2, const NodeID node_w,
const NodeID node_w, const double angle,
const double angle, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)node_v; (void)node_v;
const EdgeData &data1 = node_based_graph->GetEdgeData(edge1); const EdgeData &data1 = node_based_graph.GetEdgeData(edge1);
const EdgeData &data2 = node_based_graph->GetEdgeData(edge2); const EdgeData &data2 = node_based_graph.GetEdgeData(edge2);
bool from_ramp = isRampClass(data1.road_classification.road_class); bool from_ramp = isRampClass(data1.road_classification.road_class);
bool to_ramp = isRampClass(data2.road_classification.road_class); bool to_ramp = isRampClass(data2.road_classification.road_class);
if (node_u == node_w) if (node_u == node_w)
@ -2044,11 +2017,10 @@ AnalyzeTurn(const NodeID node_u,
return {TurnType::Turn, getTurnDirection(angle)}; return {TurnType::Turn, getTurnDirection(angle)};
} }
std::vector<TurnCandidate> std::vector<TurnCandidate> handleConflicts(const NodeID from,
handleConflicts(const NodeID from, const EdgeID via_edge,
const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates,
std::vector<TurnCandidate> turn_candidates, const util::NodeBasedDynamicGraph &node_based_graph)
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
{ {
(void)from; // FIXME (void)from; // FIXME
(void)via_edge; // FIXME (void)via_edge; // FIXME
@ -2070,11 +2042,11 @@ handleConflicts(const NodeID from,
void assignFork(const EdgeID via_edge, void assignFork(const EdgeID via_edge,
TurnCandidate &left, TurnCandidate &left,
TurnCandidate &right, TurnCandidate &right,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
{ // left fork { // left fork
const auto &out_data = node_based_graph->GetEdgeData(left.eid); const auto &out_data = node_based_graph.GetEdgeData(left.eid);
if (angularDeviation(left.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) if (angularDeviation(left.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
{ {
if (requiresAnnouncedment(in_data, out_data)) if (requiresAnnouncedment(in_data, out_data))
@ -2092,7 +2064,7 @@ void assignFork(const EdgeID via_edge,
} }
} }
{ // right fork { // right fork
const auto &out_data = node_based_graph->GetEdgeData(right.eid); const auto &out_data = node_based_graph.GetEdgeData(right.eid);
if (angularDeviation(right.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) if (angularDeviation(right.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
{ {
if (requiresAnnouncedment(in_data, out_data)) if (requiresAnnouncedment(in_data, out_data))
@ -2115,13 +2087,13 @@ void assignFork(const EdgeID via_edge,
TurnCandidate &left, TurnCandidate &left,
TurnCandidate &center, TurnCandidate &center,
TurnCandidate &right, TurnCandidate &right,
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft}; left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft};
if (angularDeviation(center.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION) if (angularDeviation(center.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
{ {
const auto &in_data = node_based_graph->GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
const auto &out_data = node_based_graph->GetEdgeData(center.eid); const auto &out_data = node_based_graph.GetEdgeData(center.eid);
if (requiresAnnouncedment(in_data, out_data)) if (requiresAnnouncedment(in_data, out_data))
{ {
center.instruction = {TurnType::Fork, DirectionModifier::Straight}; center.instruction = {TurnType::Fork, DirectionModifier::Straight};