Remove unused code in partitioner

This commit is contained in:
Patrick Niklaus 2018-02-02 12:08:39 +00:00 committed by Patrick Niklaus
parent ea4d0fa1dd
commit bb71d9b28a
2 changed files with 0 additions and 523 deletions

View File

@ -1,136 +0,0 @@
#ifndef OSRM_PARTITIONER_ANNOTATE_HPP_
#define OSRM_PARTITIONER_ANNOTATE_HPP_
#include "partitioner/bisection_graph.hpp"
#include "util/typedefs.hpp"
#include <cstdint>
#include <utility>
#include <vector>
namespace osrm
{
namespace partitioner
{
// takes the result of a recursive bisection and turns it into an annotated partition for MLD. These
// annotated partitions provide a mapping from every node in the graph to a consecutively
// numbered cell in each level of the multi level partition. Instead of using the bisection directly
// (which can result in a unbalanced tree structure)
//
// _____o______
// / \ 
// o ____o____
// / \ / \ 
// a b o _o_
// / \ / \ 
// c d o o
// / \ / \ 
// e f g h
//
// we build a balanced structure that will result in a multi-cut on any level. We transform this
// layout into:
//
// _____o__________
// / | \ 
// o | \ 
// / \ | \ 
// a b o _o_
// / \ / \ 
// c d o o
// / \ / \ 
// e f g h
class AnnotatedPartition
{
public:
// Used to generate an implicit tree representation
struct SizedID
{
BisectionID id;
std::size_t count;
bool operator<(const SizedID &other) const { return id < other.id; };
};
// Metrics that describe a single level
struct LevelMetrics
{
std::size_t border_nodes;
std::size_t border_arcs;
// impresses imbalance, if not all nodes are in that cell anymore
std::size_t contained_nodes;
std::size_t number_of_cells;
std::size_t max_border_nodes_per_cell;
std::size_t max_border_arcs_per_cell;
std::size_t total_memory_cells;
std::vector<std::size_t> cell_sizes;
std::ostream &print(std::ostream &os) const
{
os << "[level]\n"
<< "\t#border nodes: " << border_nodes << " #border arcs: " << border_arcs
<< " #cells: " << number_of_cells << " #contained nodes: " << contained_nodes << "\n"
<< "\tborder nodes: max: " << max_border_nodes_per_cell
<< " avg : " << static_cast<double>(border_nodes) / number_of_cells
<< " border arcs: max: " << max_border_arcs_per_cell << " "
<< " avg: " << static_cast<double>(border_arcs) / number_of_cells << "\n"
<< "\tmemory consumption: " << total_memory_cells / (1024.0 * 1024.0) << " MB."
<< "\n";
os << "\tcell sizes:";
for (auto s : cell_sizes)
os << " " << s;
os << std::endl;
return os;
}
std::ostream &logMachinereadable(std::ostream &os,
const std::string &identification,
std::size_t depth,
const bool print_header = false) const
{
if (print_header)
os << "[" << identification << "] # depth cells total_nodes border_nodes "
"max_border_nodes border_arcs max_border_arcs bytes "
"cell_sizes*\n";
os << "[" << identification << "] " << depth << " " << number_of_cells << " "
<< contained_nodes << " " << border_nodes << " " << max_border_nodes_per_cell << " "
<< border_arcs << " " << max_border_arcs_per_cell << " " << total_memory_cells;
for (auto s : cell_sizes)
os << " " << s;
os << "\n";
return os;
}
};
AnnotatedPartition(const BisectionGraph &graph, const std::vector<BisectionID> &bisection_ids);
private:
// print distribution of level graph as it is
void PrintBisection(const std::vector<SizedID> &implicit_tree,
const BisectionGraph &graph,
const std::vector<BisectionID> &bisection_ids) const;
// find levels that offer good distribution of average cell sizes
void SearchLevels(const std::vector<SizedID> &implicit_tree,
const BisectionGraph &graph,
const std::vector<BisectionID> &bisection_ids) const;
// set cell_ids[i] == INFTY to exclude element
LevelMetrics AnalyseLevel(const BisectionGraph &graph,
const std::vector<std::uint32_t> &cell_ids) const;
std::vector<std::uint32_t>
ComputeCellIDs(std::vector<std::pair<BisectionID, std::int32_t>> &prefixes,
const BisectionGraph &graph,
const std::vector<BisectionID> &bisection_ids) const;
};
} // namespace partitioner
} // namespace osrm
#endif // OSRM_PARTITIONER_ANNOTATE_HPP_

View File

@ -1,387 +0,0 @@
#include "partitioner/annotated_partition.hpp"
#include <algorithm>
#include <climits> // for CHAR_BIT
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <string>
#include <unordered_map>
#include "util/timing_util.hpp"
namespace osrm
{
namespace partitioner
{
namespace
{
// the shift value needed to access the most significant bit of the bisection ID
const constexpr auto SHIFT_TO_MSB_BISECTION_ID = sizeof(BisectionID) * CHAR_BIT - 1;
// an invalid ID for a cell
const constexpr std::uint32_t INVALID_CELLID = std::numeric_limits<std::uint32_t>::max();
auto masked(const BisectionID id, const std::int32_t level)
{
// special treatment for negative level
if (level == -1)
return 0u;
// 0.01.1 with 1 starting at the level+1_th most significant bit (level = 0 -> 01..1)
const auto cut_below_level = (1 << (SHIFT_TO_MSB_BISECTION_ID - level)) - 1;
const auto mask = std::numeric_limits<BisectionID>::max() ^ cut_below_level;
return id & mask;
}
// create a comparator for a given level
auto makeCompare(const std::uint32_t level)
{
return [level](const AnnotatedPartition::SizedID lhs, const AnnotatedPartition::SizedID rhs) {
return masked(lhs.id, level) < masked(rhs.id, level);
};
}
// build a tree of cells from the IDs present:
auto leftChild(const BisectionID id_prefix, const std::int32_t /*level*/) { return id_prefix; }
// given the prefix 10.... on level 1 (second level), the the right child would be
// 101.... on level 2
auto rightChild(const BisectionID id_prefix, const std::int32_t level)
{
return id_prefix | (1 << (SHIFT_TO_MSB_BISECTION_ID - (level + 1)));
}
// get the range of all children
auto getChildrenRange(const std::vector<AnnotatedPartition::SizedID> &implicit_tree,
const BisectionID id_prefix,
const std::int32_t level)
{
AnnotatedPartition::SizedID id = {id_prefix, 0};
// find all elements of the same prefix as id_prefi
auto range =
std::equal_range(implicit_tree.begin(), implicit_tree.end(), id, makeCompare(level));
// don't ever return our sentinel element as included
if (range.second == implicit_tree.end())
--range.second;
return range;
}
auto getCellSize(const std::vector<AnnotatedPartition::SizedID> &implicit_tree,
const BisectionID id_prefix,
const std::uint32_t level)
{
auto range = getChildrenRange(implicit_tree, id_prefix, level);
return range.second->count - range.first->count;
}
bool hasChildren(const std::vector<AnnotatedPartition::SizedID> &implicit_tree,
const BisectionID id_prefix,
const std::uint32_t level)
{
auto range = getChildrenRange(implicit_tree, id_prefix, level);
return std::distance(range.first, range.second) > 1;
}
} // namespace
AnnotatedPartition::AnnotatedPartition(const BisectionGraph &graph,
const std::vector<BisectionID> &bisection_ids)
{
// create a sorted vector of bisection ids that exist in the network
std::vector<SizedID> implicit_tree = [&]() {
std::map<BisectionID, SizedID> existing_ids;
// insert an ID into the sized_id set or increase the count if the element should be already
// present in the set of known ids
const auto insert_or_augment = [&existing_ids](const BisectionID id) {
SizedID sized_id = {id, 1};
auto maybe_existing_id = existing_ids.find(id);
if (maybe_existing_id == existing_ids.end())
existing_ids[id] = sized_id;
else
maybe_existing_id->second.count++;
};
std::for_each(bisection_ids.begin(), bisection_ids.end(), insert_or_augment);
std::vector<SizedID> result;
result.resize(existing_ids.size() + 1);
std::transform(existing_ids.begin(),
existing_ids.end(),
result.begin(),
[](const auto &pair) { return pair.second; });
// sentinel
result.back() = {std::numeric_limits<BisectionID>::max(), 0};
return result;
}();
// calculate a prefix sum over all sorted IDs, this allows to get the size of any partition in
// the array/level based on the prefix and lower bound on prefixes.
// e.g 00,01,10,11 allow to search for (0) (1) to find (00) and (10) as lower bounds. The
// difference in count is the size of all cells in the left part of the partition.
std::transform(implicit_tree.begin(),
implicit_tree.end(),
implicit_tree.begin(),
[sum = std::size_t{0}](SizedID id) mutable {
const auto new_sum = sum + id.count;
id.count = sum;
sum = new_sum;
return id;
});
PrintBisection(implicit_tree, graph, bisection_ids);
SearchLevels(implicit_tree, graph, bisection_ids);
}
void AnnotatedPartition::PrintBisection(const std::vector<SizedID> &implicit_tree,
const BisectionGraph &graph,
const std::vector<BisectionID> &bisection_ids) const
{
// print some statistics on the bisection tree
std::queue<BisectionID> id_queue;
id_queue.push(0);
const auto add_child = [&id_queue, &implicit_tree](const BisectionID prefix,
const std::uint32_t level) {
const auto child_range = getChildrenRange(implicit_tree, prefix, level);
if (std::distance(child_range.first, child_range.second) > 1)
id_queue.push(prefix);
};
std::vector<std::pair<BisectionID, std::int32_t>> current_level;
for (std::int32_t level = -1; !id_queue.empty(); ++level)
{
auto level_size = id_queue.size();
current_level.clear();
while (level_size--)
{
const auto prefix = id_queue.front();
id_queue.pop();
if (level == -1 || hasChildren(implicit_tree, prefix, level))
{
current_level.push_back(
std::pair<BisectionID, std::uint32_t>(leftChild(prefix, level), level + 1));
current_level.push_back(
std::pair<BisectionID, std::uint32_t>(rightChild(prefix, level), level + 1));
}
add_child(leftChild(prefix, level), level);
add_child(rightChild(prefix, level), level);
}
if (!current_level.empty())
{
const auto cell_ids = ComputeCellIDs(current_level, graph, bisection_ids);
const auto stats = AnalyseLevel(graph, cell_ids);
stats.logMachinereadable(std::cout, "bisection", level, level == -1);
}
}
}
void AnnotatedPartition::SearchLevels(const std::vector<SizedID> &implicit_tree,
const BisectionGraph &graph,
const std::vector<BisectionID> &bisection_ids) const
{
std::vector<std::pair<BisectionID, std::int32_t>> current_level;
// start searching with level 0 at prefix 0
current_level.push_back({static_cast<BisectionID>(0), -1});
std::int32_t level = -1;
const auto print_level = [&]() {
if (current_level.empty())
return;
const auto cell_ids = ComputeCellIDs(current_level, graph, bisection_ids);
const auto stats = AnalyseLevel(graph, cell_ids);
stats.logMachinereadable(std::cout, "dfs-balanced", level, level == -1);
++level;
};
std::size_t max_size = 0.5 * graph.NumberOfNodes();
std::queue<std::pair<BisectionID, std::int32_t>> id_queue;
while (!current_level.empty())
{
std::size_t total_size = 0;
std::size_t count = 0;
for (auto element : current_level)
{
// don't relax final cells
if (element.second == -1 || hasChildren(implicit_tree, element.first, element.second))
{
total_size += getCellSize(
implicit_tree, leftChild(element.first, element.second), element.second + 1);
id_queue.push(std::pair<BisectionID, std::uint32_t>(
leftChild(element.first, element.second), element.second + 1));
total_size += getCellSize(
implicit_tree, rightChild(element.first, element.second), element.second + 1);
id_queue.push(std::pair<BisectionID, std::uint32_t>(
rightChild(element.first, element.second), element.second + 1));
count += 2;
}
}
auto avg_size = (total_size / static_cast<double>(count));
current_level.clear();
const auto relax = [&id_queue, &implicit_tree, avg_size, &current_level](
const std::pair<BisectionID, std::uint32_t> &element) {
const auto size = getCellSize(implicit_tree, element.first, element.second);
if (!hasChildren(implicit_tree, element.first, element.second))
{
current_level.push_back(element);
}
else
{
const auto left = leftChild(element.first, element.second);
const auto right = rightChild(element.first, element.second);
const auto get_penalty = [avg_size](const auto size) {
return std::abs(size - avg_size);
};
if (get_penalty(size) <
0.5 * (get_penalty(getCellSize(implicit_tree, left, element.second + 1)) +
get_penalty(getCellSize(implicit_tree, right, element.second + 1))))
{
current_level.push_back(element);
}
else
{
id_queue.push(std::pair<BisectionID, std::uint32_t>(left, element.second + 1));
id_queue.push(std::pair<BisectionID, std::uint32_t>(right, element.second + 1));
}
}
};
while (!id_queue.empty())
{
relax(id_queue.front());
id_queue.pop();
}
print_level();
max_size *= 0.5;
}
}
AnnotatedPartition::LevelMetrics
AnnotatedPartition::AnalyseLevel(const BisectionGraph &graph,
const std::vector<std::uint32_t> &cell_ids) const
{
std::unordered_map<std::uint32_t, std::size_t> cell_sizes;
std::unordered_map<std::uint32_t, std::size_t> border_nodes;
std::unordered_map<std::uint32_t, std::size_t> border_arcs;
// compute basic metrics of the level
std::size_t border_nodes_total = 0;
std::size_t border_arcs_total = 0;
std::size_t contained_nodes = 0;
// only border nodes on the lowest level can be border nodes in general
for (const auto &node : graph.Nodes())
{
const auto cell_id = cell_ids[node.original_id];
if (cell_id == INVALID_CELLID)
continue;
++contained_nodes;
const auto edge_range = graph.Edges(node);
const auto border_arcs_at_node = std::count_if(
edge_range.begin(), edge_range.end(), [&cell_id, &cell_ids, &graph](const auto &edge) {
const auto target_cell_id = cell_ids[graph.Node(edge.target).original_id];
return target_cell_id != cell_id;
});
cell_sizes[cell_id]++;
border_arcs[cell_id] += border_arcs_at_node;
border_arcs_total += border_arcs_at_node;
if (border_arcs_at_node)
{
border_nodes[cell_id]++;
++border_nodes_total;
}
}
const auto by_size = [](const std::pair<std::uint32_t, std::size_t> &lhs,
const std::pair<std::uint32_t, std::size_t> &rhs) {
return lhs.second < rhs.second;
};
const auto max_nodes =
border_nodes.empty()
? 0
: std::max_element(border_nodes.begin(), border_nodes.end(), by_size)->second;
const auto max_arcs =
border_arcs.empty()
? 0
: std::max_element(border_arcs.begin(), border_arcs.end(), by_size)->second;
const auto squarded_size = [](const std::size_t accumulated,
const std::pair<std::uint32_t, std::size_t> &element) {
return accumulated + element.second * element.second;
};
const auto memory =
4 * std::accumulate(border_arcs.begin(), border_nodes.end(), std::size_t(0), squarded_size);
std::vector<std::size_t> cell_sizes_vec;
cell_sizes_vec.resize(cell_sizes.size());
std::transform(cell_sizes.begin(),
cell_sizes.end(),
cell_sizes_vec.begin(),
[](const auto &pair) { return pair.second; });
return {border_nodes_total,
border_arcs_total,
contained_nodes,
border_nodes.size(),
max_nodes,
max_arcs,
memory,
std::move(cell_sizes_vec)};
}
std::vector<std::uint32_t>
AnnotatedPartition::ComputeCellIDs(std::vector<std::pair<BisectionID, std::int32_t>> &prefixes,
const BisectionGraph &graph,
const std::vector<BisectionID> &bisection_ids) const
{
std::vector<std::uint32_t> cell_ids(graph.NumberOfNodes(), INVALID_CELLID);
std::sort(prefixes.begin(), prefixes.end(), [](const auto lhs, const auto rhs) {
return lhs.first < rhs.first;
});
for (const auto &node : graph.Nodes())
{
// find the cell_id of node in the current levels
const auto id = bisection_ids[node.original_id];
const auto is_prefixed_by = [id](const auto &prefix) {
return masked(id, prefix.second) == prefix.first;
};
const auto prefix = std::lower_bound(
prefixes.begin(), prefixes.end(), id, [&](const auto prefix, const BisectionID id) {
return prefix.first < masked(id, prefix.second);
});
if (prefix == prefixes.end())
continue;
if (is_prefixed_by(*prefix))
cell_ids[node.original_id] = std::distance(prefixes.begin(), prefix);
}
return cell_ids;
}
} // namespace partitioner
} // namespace osrm