refactor and improve the round trip computation of multiple SCCs
Problem: - old solution was slow - depending on the result of TarjanSCC, new distance tables and new phantom node vectors were created to run tsp on it Solution: - dont create new distance tables and phantom node vectors - pass an additional vector with the information which locations are in the same component and ignore all others fix bug for scc split computation
This commit is contained in:
parent
84c12793e8
commit
b15f8f68e4
@ -91,7 +91,7 @@ set(
|
||||
|
||||
add_library(COORDINATE OBJECT ${CoordinateGlob})
|
||||
add_library(GITDESCRIPTION OBJECT util/git_sha.cpp)
|
||||
add_library(OSRM ${OSRMSources} $<TARGET_OBJECTS:ANGLE> $<TARGET_OBJECTS:COORDINATE> $<TARGET_OBJECTS:GITDESCRIPTION> $<TARGET_OBJECTS:FINGERPRINT> $<TARGET_OBJECTS:COORDINATE> $<TARGET_OBJECTS:LOGGER> $<TARGET_OBJECTS:PHANTOMNODE> $<TARGET_OBJECTS:EXCEPTION> $<TARGET_OBJECTS:MERCATOR> $<TARGET_OBJECTS:IMPORT>)
|
||||
add_library(OSRM ${OSRMSources} $<TARGET_OBJECTS:ANGLE> $<TARGET_OBJECTS:COORDINATE> $<TARGET_OBJECTS:GITDESCRIPTION> $<TARGET_OBJECTS:FINGERPRINT> $<TARGET_OBJECTS:COORDINATE> $<TARGET_OBJECTS:LOGGER> $<TARGET_OBJECTS:RESTRICTION> $<TARGET_OBJECTS:PHANTOMNODE> $<TARGET_OBJECTS:EXCEPTION> $<TARGET_OBJECTS:MERCATOR> $<TARGET_OBJECTS:IMPORT>)
|
||||
|
||||
add_library(FINGERPRINT OBJECT util/fingerprint.cpp)
|
||||
add_dependencies(FINGERPRINT FingerPrintConfigure)
|
||||
|
@ -201,6 +201,11 @@ template <typename GraphT> class TarjanSCC
|
||||
return component_size_vector[component_id];
|
||||
}
|
||||
|
||||
unsigned get_component_size_by_id(const unsigned component_id) const
|
||||
{
|
||||
return component_size_vector[component_id];
|
||||
}
|
||||
|
||||
unsigned get_component_id(const NodeID node) const { return components_index[node]; }
|
||||
};
|
||||
|
||||
|
66
data_structures/matrix_graph_wrapper.hpp
Normal file
66
data_structures/matrix_graph_wrapper.hpp
Normal file
@ -0,0 +1,66 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2015, Project OSRM contributors
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
Redistributions of source code must retain the above copyright notice, this list
|
||||
of conditions and the following disclaimer.
|
||||
Redistributions in binary form must reproduce the above copyright notice, this
|
||||
list of conditions and the following disclaimer in the documentation and/or
|
||||
other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
*/
|
||||
|
||||
#ifndef MATRIX_GRAPH_WRAPPER_H
|
||||
#define MATRIX_GRAPH_WRAPPER_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
//This Wrapper provides all methods that are needed for TarjanSCC, when the graph is given in a
|
||||
//matrix representation (e.g. as output from a distance table call)
|
||||
|
||||
template <typename T> class MatrixGraphWrapper {
|
||||
public:
|
||||
|
||||
MatrixGraphWrapper(std::vector<T> table, const unsigned number_of_nodes) : table_(table), number_of_nodes_(number_of_nodes) {};
|
||||
|
||||
unsigned GetNumberOfNodes() {
|
||||
return number_of_nodes_;
|
||||
}
|
||||
|
||||
std::vector<unsigned> GetAdjacentEdgeRange(const unsigned node) const {
|
||||
std::vector<unsigned> edges;
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
for (auto i = 0; i < number_of_nodes_; ++i) {
|
||||
if (*(table_.begin() + node * number_of_nodes_ + i) != maxint) {
|
||||
edges.push_back(i);
|
||||
}
|
||||
}
|
||||
return edges;
|
||||
}
|
||||
|
||||
unsigned GetTarget(const unsigned edge) {
|
||||
return edge;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<T> table_;
|
||||
const unsigned number_of_nodes_;
|
||||
};
|
||||
|
||||
|
||||
#endif // MATRIX_GRAPH_WRAPPER_H
|
@ -31,11 +31,13 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#include "plugin_base.hpp"
|
||||
|
||||
#include "../algorithms/object_encoder.hpp"
|
||||
#include "../algorithms/tiny_components.hpp"
|
||||
#include "../routing_algorithms/tsp_nearest_neighbour.hpp"
|
||||
#include "../routing_algorithms/tsp_farthest_insertion.hpp"
|
||||
#include "../routing_algorithms/tsp_brute_force.hpp"
|
||||
#include "../data_structures/query_edge.hpp"
|
||||
#include "../data_structures/search_engine.hpp"
|
||||
#include "../data_structures/matrix_graph_wrapper.hpp"
|
||||
#include "../descriptors/descriptor_base.hpp"
|
||||
#include "../descriptors/json_descriptor.hpp"
|
||||
#include "../util/json_renderer.hpp"
|
||||
@ -95,97 +97,41 @@ template <class DataFacadeT> class RoundTripPlugin final : public BasePlugin
|
||||
}
|
||||
}
|
||||
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector, std::vector<EdgeWeight> & result_table) {
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector,
|
||||
std::vector<EdgeWeight> & result_table,
|
||||
std::vector<std::vector<unsigned>> & components) {
|
||||
|
||||
// Run TarjanSCC
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
auto wrapper = std::make_shared<MatrixGraphWrapper<EdgeWeight>>(result_table, number_of_locations);
|
||||
auto empty_restriction = RestrictionMap(std::vector<TurnRestriction>());
|
||||
auto empty_vector = std::vector<bool>();
|
||||
auto scc = TarjanSCC<MatrixGraphWrapper<EdgeWeight>>(wrapper, empty_restriction, empty_vector);
|
||||
scc.run();
|
||||
|
||||
//////////////////////////////////// DELETE UNACCESSIBLE LOCATIONS /////////////////////////////////////////
|
||||
if (*std::max_element(result_table.begin(), result_table.end()) == maxint) {
|
||||
const int half = number_of_locations / 2;
|
||||
std::vector<int> to_delete;
|
||||
for (int j = 0; j < scc.get_number_of_components(); ++j){
|
||||
components.push_back(std::vector<unsigned>());
|
||||
}
|
||||
|
||||
for (int i = number_of_locations - 1; i >= 0; --i) {
|
||||
// if the location is unaccessible by most of the other locations, remember the location
|
||||
if (std::count(result_table.begin() + i * number_of_locations, result_table.begin() + (i+1) * number_of_locations, maxint) > half) {
|
||||
to_delete.push_back(i);
|
||||
}
|
||||
}
|
||||
//delete all unaccessible locations
|
||||
for (int k = 0; k < to_delete.size(); ++k) {
|
||||
// delete its row
|
||||
result_table.erase(result_table.begin() + to_delete[k] * number_of_locations, result_table.begin() + (to_delete[k]+1) * number_of_locations);
|
||||
--number_of_locations;
|
||||
// delete its column
|
||||
for (int j = 0; j < number_of_locations; ++j) {
|
||||
result_table.erase(result_table.begin() + j * number_of_locations + to_delete[k]);
|
||||
}
|
||||
// delete its PhantomNode
|
||||
phantom_node_vector.erase(phantom_node_vector.begin() + to_delete[k]);
|
||||
}
|
||||
for (int i = 0; i < number_of_locations; ++i) {
|
||||
components[scc.get_component_id(i)].push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
void SetJSONOutput (const RouteParameters &route_parameters,
|
||||
int tsp_time,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation,
|
||||
osrm::json::Object & json_result){
|
||||
void SetLocPermutationOutput(const std::vector<int> & loc_permutation, osrm::json::Object & json_result){
|
||||
osrm::json::Array json_loc_permutation;
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), loc_permutation.begin(), loc_permutation.end());
|
||||
json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
json_result.values["distance"] = min_route.shortest_path_length;
|
||||
json_result.values["runtime"] = tsp_time;
|
||||
}
|
||||
|
||||
void SetDistanceOutput(const int distance, osrm::json::Object & json_result) {
|
||||
json_result.values["distance"] = distance;
|
||||
}
|
||||
void SetRuntimeOutput(const float runtime, osrm::json::Object & json_result) {
|
||||
json_result.values["runtime"] = runtime;
|
||||
}
|
||||
|
||||
|
||||
// if (route_parameters.tsp_algo.compare("NN"))
|
||||
// //######################### NEAREST NEIGHBOUR ###############################//
|
||||
// TIMER_START(tsp);
|
||||
// osrm::tsp::NearestNeighbour(route_parameters, phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
// search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
// TIMER_STOP(tsp);
|
||||
// SimpleLogger().Write() << "Distance " << min_route.shortest_path_length;
|
||||
// SimpleLogger().Write() << "Time " << TIMER_MSEC(tsp) + TIMER_MSEC(tsp_pre);
|
||||
|
||||
// osrm::json::Array json_loc_permutation;
|
||||
// json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
// json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
// json_result.values["distance"] = min_route.shortest_path_length;
|
||||
// json_result.values["runtime"] = TIMER_MSEC(tsp);
|
||||
// else if (route_parameters.tsp_algo.compare("BF")
|
||||
// //########################### BRUTE FORCE ####################################//
|
||||
// if (route_parameters.coordinates.size() < 12) {
|
||||
// TIMER_START(tsp);
|
||||
// osrm::tsp::BruteForce(route_parameters, phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
// search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
// TIMER_STOP(tsp);
|
||||
// SimpleLogger().Write() << "Distance " << min_route.shortest_path_length;
|
||||
// SimpleLogger().Write() << "Time " << TIMER_MSEC(tsp);
|
||||
|
||||
// osrm::json::Array json_loc_permutation;
|
||||
// json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
// json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
// json_result.values["distance"] = min_route.shortest_path_length;
|
||||
// json_result.values["runtime"] = TIMER_MSEC(tsp);
|
||||
// } else {
|
||||
// json_result.values["distance"] = -1;
|
||||
// json_result.values["runtime"] = -1;
|
||||
// }
|
||||
// else
|
||||
// //######################## FARTHEST INSERTION ###############################//
|
||||
// TIMER_START(tsp);
|
||||
// osrm::tsp::FarthestInsertion(route_parameters, phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
// search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
// TIMER_STOP(tsp);
|
||||
// SimpleLogger().Write() << "Distance " << min_route.shortest_path_length;
|
||||
// SimpleLogger().Write() << "Time " << TIMER_MSEC(tsp);
|
||||
|
||||
// osrm::json::Array json_loc_permutation;
|
||||
// json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
// json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
// json_result.values["distance"] = min_route.shortest_path_length;
|
||||
// json_result.values["runtime"] = TIMER_MSEC(tsp);
|
||||
|
||||
void SetGeometry(const RouteParameters &route_parameters, const InternalRouteResult & min_route, osrm::json::Object & json_result) {
|
||||
// return geometry result to json
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
@ -212,20 +158,53 @@ template <class DataFacadeT> class RoundTripPlugin final : public BasePlugin
|
||||
return 400;
|
||||
}
|
||||
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table);
|
||||
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(number_of_locations, -1);
|
||||
//######################## FARTHEST INSERTION ###############################//
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::FarthestInsertionTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
TIMER_STOP(tsp);
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
if (*std::max_element(result_table->begin(), result_table->end()) == maxint) {
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
descriptor->SetConfig(route_parameters);
|
||||
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
std::vector<std::vector<unsigned>> components;
|
||||
TIMER_START(tsp);
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table, components);
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
std::vector<int> min_loc_permutation(number_of_locations, -1);
|
||||
auto min_dist = 0;
|
||||
for(auto k = 0; k < components.size(); ++k) {
|
||||
if (components[k].size() > 1) {
|
||||
InternalRouteResult min_route;
|
||||
osrm::tsp::FarthestInsertionTSP(components[k], phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
min_dist += min_route.shortest_path_length;
|
||||
descriptor->Run(min_route, json_result);
|
||||
}
|
||||
}
|
||||
TIMER_STOP(tsp);
|
||||
|
||||
SetJSONOutput(route_parameters, TIMER_MSEC(tsp), min_route, min_loc_permutation, json_result);
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetDistanceOutput(min_dist, json_result);
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
} else {
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(number_of_locations, -1);
|
||||
//######################## FARTHEST INSERTION ###############################//
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::FarthestInsertionTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
TIMER_STOP(tsp);
|
||||
// //######################### NEAREST NEIGHBOUR ###############################//
|
||||
// TIMER_START(tsp);
|
||||
// osrm::tsp::NearestNeighbourTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
// search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
// TIMER_STOP(tsp);
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
SetDistanceOutput(min_route.shortest_path_length, json_result);
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetGeometry(route_parameters, min_route, json_result);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -96,47 +96,41 @@ template <class DataFacadeT> class RoundTripPluginBF final : public BasePlugin
|
||||
}
|
||||
}
|
||||
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector, std::vector<EdgeWeight> & result_table) {
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector,
|
||||
std::vector<EdgeWeight> & result_table,
|
||||
std::vector<std::vector<unsigned>> & components) {
|
||||
// Run TarjanSCC
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
auto wrapper = std::make_shared<MatrixGraphWrapper<EdgeWeight>>(result_table, number_of_locations);
|
||||
auto empty_restriction = RestrictionMap(std::vector<TurnRestriction>());
|
||||
auto empty_vector = std::vector<bool>();
|
||||
auto scc = TarjanSCC<MatrixGraphWrapper<EdgeWeight>>(wrapper, empty_restriction, empty_vector);
|
||||
scc.run();
|
||||
|
||||
//////////////////////////////////// DELETE UNACCESSIBLE LOCATIONS /////////////////////////////////////////
|
||||
if (*std::max_element(result_table.begin(), result_table.end()) == maxint) {
|
||||
const int half = number_of_locations / 2;
|
||||
std::vector<int> to_delete;
|
||||
for (int j = 0; j < scc.get_number_of_components(); ++j){
|
||||
components.push_back(std::vector<unsigned>());
|
||||
}
|
||||
|
||||
for (int i = number_of_locations - 1; i >= 0; --i) {
|
||||
// if the location is unaccessible by most of the other locations, remember the location
|
||||
if (std::count(result_table.begin() + i * number_of_locations, result_table.begin() + (i+1) * number_of_locations, maxint) > half) {
|
||||
to_delete.push_back(i);
|
||||
}
|
||||
}
|
||||
//delete all unaccessible locations
|
||||
for (int k = 0; k < to_delete.size(); ++k) {
|
||||
// delete its row
|
||||
result_table.erase(result_table.begin() + to_delete[k] * number_of_locations, result_table.begin() + (to_delete[k]+1) * number_of_locations);
|
||||
--number_of_locations;
|
||||
// delete its column
|
||||
for (int j = 0; j < number_of_locations; ++j) {
|
||||
result_table.erase(result_table.begin() + j * number_of_locations + to_delete[k]);
|
||||
}
|
||||
// delete its PhantomNode
|
||||
phantom_node_vector.erase(phantom_node_vector.begin() + to_delete[k]);
|
||||
}
|
||||
for (int i = 0; i < number_of_locations; ++i) {
|
||||
components[scc.get_component_id(i)].push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
void SetJSONOutput (const RouteParameters &route_parameters,
|
||||
int tsp_time,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation,
|
||||
osrm::json::Object & json_result){
|
||||
void SetLocPermutationOutput(const std::vector<int> & loc_permutation, osrm::json::Object & json_result){
|
||||
osrm::json::Array json_loc_permutation;
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), loc_permutation.begin(), loc_permutation.end());
|
||||
json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
json_result.values["distance"] = min_route.shortest_path_length;
|
||||
json_result.values["runtime"] = tsp_time;
|
||||
}
|
||||
|
||||
void SetDistanceOutput(const int distance, osrm::json::Object & json_result) {
|
||||
json_result.values["distance"] = distance;
|
||||
}
|
||||
|
||||
void SetRuntimeOutput(const float runtime, osrm::json::Object & json_result) {
|
||||
json_result.values["runtime"] = runtime;
|
||||
}
|
||||
|
||||
void SetGeometry(const RouteParameters &route_parameters, const InternalRouteResult & min_route, osrm::json::Object & json_result) {
|
||||
// return geometry result to json
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
@ -145,6 +139,7 @@ template <class DataFacadeT> class RoundTripPluginBF final : public BasePlugin
|
||||
descriptor->Run(min_route, json_result);
|
||||
}
|
||||
|
||||
|
||||
int HandleRequest(const RouteParameters &route_parameters,
|
||||
osrm::json::Object &json_result) override final
|
||||
{
|
||||
@ -163,39 +158,57 @@ template <class DataFacadeT> class RoundTripPluginBF final : public BasePlugin
|
||||
return 400;
|
||||
}
|
||||
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table);
|
||||
if (route_parameters.coordinates.size() < 14) {
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
if (*std::max_element(result_table->begin(), result_table->end()) == maxint) {
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
descriptor->SetConfig(route_parameters);
|
||||
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(phantom_node_vector.size(), -1);
|
||||
//########################### BRUTE FORCE ####################################//
|
||||
if (route_parameters.coordinates.size() < 11) {
|
||||
std::vector<std::vector<unsigned>> components;
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::BruteForceTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table, components);
|
||||
|
||||
std::vector<int> min_loc_permutation(phantom_node_vector.size(), -1);
|
||||
auto min_dist = 0;
|
||||
for(auto k = 0; k < components.size(); ++k) {
|
||||
if (components[k].size() > 1) {
|
||||
InternalRouteResult min_route;
|
||||
//run nearest neighbour
|
||||
osrm::tsp::BruteForceTSP(components[k], phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
//compute route
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
//return geometry
|
||||
min_dist += min_route.shortest_path_length;
|
||||
descriptor->Run(min_route, json_result);
|
||||
}
|
||||
}
|
||||
TIMER_STOP(tsp);
|
||||
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetDistanceOutput(min_dist, json_result);
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
} else {
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(number_of_locations, -1);
|
||||
//########################### BRUTE FORCE ####################################//
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::BruteForceTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
TIMER_STOP(tsp);
|
||||
|
||||
osrm::json::Array json_loc_permutation;
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
json_result.values["distance"] = min_route.shortest_path_length;
|
||||
SimpleLogger().Write() << "BF GEOM DISTANCE " << min_route.shortest_path_length;
|
||||
json_result.values["runtime"] = TIMER_MSEC(tsp);
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
SetDistanceOutput(min_route.shortest_path_length, json_result);
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetGeometry(route_parameters, min_route, json_result);
|
||||
}
|
||||
} else {
|
||||
json_result.values["distance"] = -1;
|
||||
json_result.values["runtime"] = -1;
|
||||
SetRuntimeOutput(-1, json_result);
|
||||
SetDistanceOutput(-1, json_result);
|
||||
}
|
||||
// return geometry result to json
|
||||
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
|
||||
descriptor->SetConfig(route_parameters);
|
||||
descriptor->Run(min_route, json_result);
|
||||
|
||||
|
||||
|
||||
return 200;
|
||||
}
|
||||
|
||||
|
@ -95,47 +95,41 @@ template <class DataFacadeT> class RoundTripPluginFI final : public BasePlugin
|
||||
}
|
||||
}
|
||||
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector, std::vector<EdgeWeight> & result_table) {
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector,
|
||||
std::vector<EdgeWeight> & result_table,
|
||||
std::vector<std::vector<unsigned>> & components) {
|
||||
// Run TarjanSCC
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
auto wrapper = std::make_shared<MatrixGraphWrapper<EdgeWeight>>(result_table, number_of_locations);
|
||||
auto empty_restriction = RestrictionMap(std::vector<TurnRestriction>());
|
||||
auto empty_vector = std::vector<bool>();
|
||||
auto scc = TarjanSCC<MatrixGraphWrapper<EdgeWeight>>(wrapper, empty_restriction, empty_vector);
|
||||
scc.run();
|
||||
|
||||
//////////////////////////////////// DELETE UNACCESSIBLE LOCATIONS /////////////////////////////////////////
|
||||
if (*std::max_element(result_table.begin(), result_table.end()) == maxint) {
|
||||
const int half = number_of_locations / 2;
|
||||
std::vector<int> to_delete;
|
||||
for (int j = 0; j < scc.get_number_of_components(); ++j){
|
||||
components.push_back(std::vector<unsigned>());
|
||||
}
|
||||
|
||||
for (int i = number_of_locations - 1; i >= 0; --i) {
|
||||
// if the location is unaccessible by most of the other locations, remember the location
|
||||
if (std::count(result_table.begin() + i * number_of_locations, result_table.begin() + (i+1) * number_of_locations, maxint) > half) {
|
||||
to_delete.push_back(i);
|
||||
}
|
||||
}
|
||||
//delete all unaccessible locations
|
||||
for (int k = 0; k < to_delete.size(); ++k) {
|
||||
// delete its row
|
||||
result_table.erase(result_table.begin() + to_delete[k] * number_of_locations, result_table.begin() + (to_delete[k]+1) * number_of_locations);
|
||||
--number_of_locations;
|
||||
// delete its column
|
||||
for (int j = 0; j < number_of_locations; ++j) {
|
||||
result_table.erase(result_table.begin() + j * number_of_locations + to_delete[k]);
|
||||
}
|
||||
// delete its PhantomNode
|
||||
phantom_node_vector.erase(phantom_node_vector.begin() + to_delete[k]);
|
||||
}
|
||||
for (int i = 0; i < number_of_locations; ++i) {
|
||||
components[scc.get_component_id(i)].push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
void SetJSONOutput (const RouteParameters &route_parameters,
|
||||
int tsp_time,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation,
|
||||
osrm::json::Object & json_result){
|
||||
void SetLocPermutationOutput(const std::vector<int> & loc_permutation, osrm::json::Object & json_result){
|
||||
osrm::json::Array json_loc_permutation;
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), loc_permutation.begin(), loc_permutation.end());
|
||||
json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
json_result.values["distance"] = min_route.shortest_path_length;
|
||||
json_result.values["runtime"] = tsp_time;
|
||||
}
|
||||
|
||||
void SetDistanceOutput(const int distance, osrm::json::Object & json_result) {
|
||||
json_result.values["distance"] = distance;
|
||||
}
|
||||
|
||||
void SetRuntimeOutput(const float runtime, osrm::json::Object & json_result) {
|
||||
json_result.values["runtime"] = runtime;
|
||||
}
|
||||
|
||||
void SetGeometry(const RouteParameters &route_parameters, const InternalRouteResult & min_route, osrm::json::Object & json_result) {
|
||||
// return geometry result to json
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
@ -162,19 +156,48 @@ template <class DataFacadeT> class RoundTripPluginFI final : public BasePlugin
|
||||
return 400;
|
||||
}
|
||||
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table);
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
if (*std::max_element(result_table->begin(), result_table->end()) == maxint) {
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
descriptor->SetConfig(route_parameters);
|
||||
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(phantom_node_vector.size(), -1);
|
||||
//######################## FARTHEST INSERTION ###############################//
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::FarthestInsertionTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
TIMER_STOP(tsp);
|
||||
std::vector<std::vector<unsigned>> components;
|
||||
TIMER_START(tsp);
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table, components);
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
std::vector<int> min_loc_permutation(number_of_locations, -1);
|
||||
auto min_dist = 0;
|
||||
for(auto k = 0; k < components.size(); ++k) {
|
||||
if (components[k].size() > 1) {
|
||||
InternalRouteResult min_route;
|
||||
osrm::tsp::FarthestInsertionTSP(components[k], phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
min_dist += min_route.shortest_path_length;
|
||||
descriptor->Run(min_route, json_result);
|
||||
}
|
||||
}
|
||||
TIMER_STOP(tsp);
|
||||
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetDistanceOutput(min_dist, json_result);
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
} else {
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(number_of_locations, -1);
|
||||
//######################## FARTHEST INSERTION ###############################//
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::FarthestInsertionTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
TIMER_STOP(tsp);
|
||||
|
||||
SetJSONOutput(route_parameters, TIMER_MSEC(tsp), min_route, min_loc_permutation, json_result);
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
SetDistanceOutput(min_route.shortest_path_length, json_result);
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetGeometry(route_parameters, min_route, json_result);
|
||||
}
|
||||
|
||||
return 200;
|
||||
}
|
||||
|
@ -96,47 +96,41 @@ template <class DataFacadeT> class RoundTripPluginNN final : public BasePlugin
|
||||
}
|
||||
}
|
||||
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector, std::vector<EdgeWeight> & result_table) {
|
||||
void SplitUnaccessibleLocations(PhantomNodeArray & phantom_node_vector,
|
||||
std::vector<EdgeWeight> & result_table,
|
||||
std::vector<std::vector<unsigned>> & components) {
|
||||
// Run TarjanSCC
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
auto wrapper = std::make_shared<MatrixGraphWrapper<EdgeWeight>>(result_table, number_of_locations);
|
||||
auto empty_restriction = RestrictionMap(std::vector<TurnRestriction>());
|
||||
auto empty_vector = std::vector<bool>();
|
||||
auto scc = TarjanSCC<MatrixGraphWrapper<EdgeWeight>>(wrapper, empty_restriction, empty_vector);
|
||||
scc.run();
|
||||
|
||||
//////////////////////////////////// DELETE UNACCESSIBLE LOCATIONS /////////////////////////////////////////
|
||||
if (*std::max_element(result_table.begin(), result_table.end()) == maxint) {
|
||||
const int half = number_of_locations / 2;
|
||||
std::vector<int> to_delete;
|
||||
for (int j = 0; j < scc.get_number_of_components(); ++j){
|
||||
components.push_back(std::vector<unsigned>());
|
||||
}
|
||||
|
||||
for (int i = number_of_locations - 1; i >= 0; --i) {
|
||||
// if the location is unaccessible by most of the other locations, remember the location
|
||||
if (std::count(result_table.begin() + i * number_of_locations, result_table.begin() + (i+1) * number_of_locations, maxint) > half) {
|
||||
to_delete.push_back(i);
|
||||
}
|
||||
}
|
||||
//delete all unaccessible locations
|
||||
for (int k = 0; k < to_delete.size(); ++k) {
|
||||
// delete its row
|
||||
result_table.erase(result_table.begin() + to_delete[k] * number_of_locations, result_table.begin() + (to_delete[k]+1) * number_of_locations);
|
||||
--number_of_locations;
|
||||
// delete its column
|
||||
for (int j = 0; j < number_of_locations; ++j) {
|
||||
result_table.erase(result_table.begin() + j * number_of_locations + to_delete[k]);
|
||||
}
|
||||
// delete its PhantomNode
|
||||
phantom_node_vector.erase(phantom_node_vector.begin() + to_delete[k]);
|
||||
}
|
||||
for (int i = 0; i < number_of_locations; ++i) {
|
||||
components[scc.get_component_id(i)].push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
void SetJSONOutput (const RouteParameters &route_parameters,
|
||||
int tsp_time,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation,
|
||||
osrm::json::Object & json_result){
|
||||
void SetLocPermutationOutput(const std::vector<int> & loc_permutation, osrm::json::Object & json_result){
|
||||
osrm::json::Array json_loc_permutation;
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), min_loc_permutation.begin(), min_loc_permutation.end());
|
||||
json_loc_permutation.values.insert(json_loc_permutation.values.end(), loc_permutation.begin(), loc_permutation.end());
|
||||
json_result.values["loc_permutation"] = json_loc_permutation;
|
||||
json_result.values["distance"] = min_route.shortest_path_length;
|
||||
json_result.values["runtime"] = tsp_time;
|
||||
}
|
||||
|
||||
void SetDistanceOutput(const int distance, osrm::json::Object & json_result) {
|
||||
json_result.values["distance"] = distance;
|
||||
}
|
||||
|
||||
void SetRuntimeOutput(const float runtime, osrm::json::Object & json_result) {
|
||||
json_result.values["runtime"] = runtime;
|
||||
}
|
||||
|
||||
void SetGeometry(const RouteParameters &route_parameters, const InternalRouteResult & min_route, osrm::json::Object & json_result) {
|
||||
// return geometry result to json
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
@ -163,19 +157,51 @@ template <class DataFacadeT> class RoundTripPluginNN final : public BasePlugin
|
||||
return 400;
|
||||
}
|
||||
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table);
|
||||
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(phantom_node_vector.size(), -1);
|
||||
//######################### NEAREST NEIGHBOUR ###############################//
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::NearestNeighbourTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
TIMER_STOP(tsp);
|
||||
const auto maxint = std::numeric_limits<int>::max();
|
||||
if (*std::max_element(result_table->begin(), result_table->end()) == maxint) {
|
||||
std::unique_ptr<BaseDescriptor<DataFacadeT>> descriptor;
|
||||
descriptor = osrm::make_unique<JSONDescriptor<DataFacadeT>>(facade);
|
||||
descriptor->SetConfig(route_parameters);
|
||||
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
std::vector<std::vector<unsigned>> components;
|
||||
TIMER_START(tsp);
|
||||
SplitUnaccessibleLocations(phantom_node_vector, *result_table, components);
|
||||
|
||||
SetJSONOutput(route_parameters, TIMER_MSEC(tsp), min_route, min_loc_permutation, json_result);
|
||||
std::vector<int> min_loc_permutation(phantom_node_vector.size(), -1);
|
||||
auto min_dist = 0;
|
||||
for(auto k = 0; k < components.size(); ++k) {
|
||||
if (components[k].size() > 1) {
|
||||
InternalRouteResult min_route;
|
||||
//run nearest neighbour
|
||||
osrm::tsp::NearestNeighbourTSP(components[k], phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
//compute route
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
//return geometry
|
||||
min_dist += min_route.shortest_path_length;
|
||||
descriptor->Run(min_route, json_result);
|
||||
}
|
||||
}
|
||||
TIMER_STOP(tsp);
|
||||
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetDistanceOutput(min_dist, json_result);
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
} else {
|
||||
auto number_of_locations = phantom_node_vector.size();
|
||||
InternalRouteResult min_route;
|
||||
std::vector<int> min_loc_permutation(number_of_locations, -1);
|
||||
//######################### NEAREST NEIGHBOUR ###############################//
|
||||
TIMER_START(tsp);
|
||||
osrm::tsp::NearestNeighbourTSP(phantom_node_vector, *result_table, min_route, min_loc_permutation);
|
||||
search_engine_ptr->shortest_path(min_route.segment_end_coordinates, route_parameters.uturns, min_route);
|
||||
TIMER_STOP(tsp);
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == route_parameters.coordinates.size());
|
||||
SetLocPermutationOutput(min_loc_permutation, json_result);
|
||||
SetDistanceOutput(min_route.shortest_path_length, json_result);
|
||||
SetRuntimeOutput(TIMER_MSEC(tsp), json_result);
|
||||
SetGeometry(route_parameters, min_route, json_result);
|
||||
}
|
||||
|
||||
return 200;
|
||||
}
|
||||
|
@ -51,19 +51,19 @@ namespace osrm
|
||||
namespace tsp
|
||||
{
|
||||
|
||||
|
||||
int ReturnDistance(const std::vector<EdgeWeight> & dist_table, const std::vector<int> location_order, const int min_route_dist, const int number_of_locations) {
|
||||
template <typename number>
|
||||
int ReturnDistance(const std::vector<EdgeWeight> & dist_table, const std::vector<number> & location_order, const int min_route_dist, const int number_of_locations, const int component_size) {
|
||||
int i = 0;
|
||||
int route_dist = 0;
|
||||
|
||||
// compute length and stop if length is longer than route already found
|
||||
while (i < number_of_locations - 1 && route_dist < min_route_dist) {
|
||||
while (i < component_size - 1 && route_dist < min_route_dist) {
|
||||
//get distance from location i to location i+1
|
||||
route_dist += *(dist_table.begin() + (location_order[i] * number_of_locations) + location_order[i+1]);
|
||||
++i;
|
||||
}
|
||||
//get distance from last location to first location
|
||||
route_dist += *(dist_table.begin() + (location_order[number_of_locations-1] * number_of_locations) + location_order[0]);
|
||||
route_dist += *(dist_table.begin() + (location_order[component_size-1] * number_of_locations) + location_order[0]);
|
||||
|
||||
if (route_dist < min_route_dist) {
|
||||
return route_dist;
|
||||
@ -73,6 +73,39 @@ int ReturnDistance(const std::vector<EdgeWeight> & dist_table, const std::vector
|
||||
}
|
||||
}
|
||||
|
||||
void BruteForceTSP(std::vector<unsigned> & location,
|
||||
const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
|
||||
const auto number_of_location = phantom_node_vector.size();
|
||||
const int component_size = location.size();
|
||||
int min_route_dist = std::numeric_limits<int>::max();
|
||||
|
||||
std::vector<unsigned> min_location;
|
||||
|
||||
// check length of all possible permutation of the location ids
|
||||
do {
|
||||
// int new_distance = ReturnDistance(dist_table, location, min_route_dist, number_of_location, component_size);
|
||||
int new_distance = 4;
|
||||
if (new_distance != -1) {
|
||||
min_route_dist = new_distance;
|
||||
min_location = location;
|
||||
}
|
||||
} while(std::next_permutation(location.begin(), location.end()));
|
||||
|
||||
PhantomNodes viapoint;
|
||||
for (int i = 0; i < component_size - 1; ++i) {
|
||||
viapoint = PhantomNodes{phantom_node_vector[min_location[i]][0], phantom_node_vector[min_location[i + 1]][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
min_loc_permutation[min_location[i]] = i;
|
||||
}
|
||||
min_loc_permutation[min_location[component_size - 1]] = component_size - 1;
|
||||
viapoint = PhantomNodes{phantom_node_vector[min_location[component_size - 1]][0], phantom_node_vector[min_location[0]][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
}
|
||||
|
||||
void BruteForceTSP(const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
@ -87,7 +120,7 @@ void BruteForceTSP(const PhantomNodeArray & phantom_node_vector,
|
||||
|
||||
// check length of all possible permutation of the location ids
|
||||
do {
|
||||
int new_distance = ReturnDistance(dist_table, location_ids, min_route_dist, number_of_locations);
|
||||
int new_distance = ReturnDistance(dist_table, location_ids, min_route_dist, number_of_locations, number_of_locations);
|
||||
if (new_distance != -1) {
|
||||
min_route_dist = new_distance;
|
||||
//TODO: this gets copied right? fix this
|
||||
|
@ -31,6 +31,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
#include "../data_structures/search_engine.hpp"
|
||||
#include "../util/string_util.hpp"
|
||||
#include "../tools/tsp_logs.hpp"
|
||||
|
||||
#include <osrm/json_container.hpp>
|
||||
|
||||
@ -41,12 +42,136 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace tsp
|
||||
{
|
||||
|
||||
void GetLongestRoundTrip(const int current_loc,
|
||||
std::list<int> & current_trip,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
const int number_of_locations,
|
||||
int & longest_min_tour,
|
||||
std::list<int>::iterator & following_loc){
|
||||
// for all nodes in the current trip find the best insertion resulting in the shortest path
|
||||
for (auto from_node = current_trip.begin(); from_node != std::prev(current_trip.end()); ++from_node) {
|
||||
auto to_node = std::next(from_node);
|
||||
|
||||
auto dist_from = *(dist_table.begin() + (*from_node * number_of_locations) + current_loc);
|
||||
auto dist_to = *(dist_table.begin() + (current_loc * number_of_locations) + *to_node);
|
||||
auto trip_dist = dist_from + dist_to - *(dist_table.begin() + (*from_node * number_of_locations) + *to_node);
|
||||
|
||||
// from all possible insertions to the current trip, choose the longest of all minimal insertions
|
||||
if (trip_dist < longest_min_tour) {
|
||||
longest_min_tour = trip_dist;
|
||||
following_loc = to_node;
|
||||
}
|
||||
}
|
||||
{ // check insertion between last and first location too
|
||||
auto from_node = std::prev(current_trip.end());
|
||||
auto to_node = current_trip.begin();
|
||||
|
||||
auto dist_from = *(dist_table.begin() + (*from_node * number_of_locations) + current_loc);
|
||||
auto dist_to = *(dist_table.begin() + (current_loc * number_of_locations) + *to_node);
|
||||
auto trip_dist = dist_from + dist_to - *(dist_table.begin() + (*from_node * number_of_locations) + *to_node);
|
||||
if (trip_dist < longest_min_tour) {
|
||||
longest_min_tour = trip_dist;
|
||||
following_loc = to_node;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ComputeRouteAndPermutation(const PhantomNodeArray & phantom_node_vector,
|
||||
std::list<int> & current_trip,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
// given he final trip, compute total distance and return the route and location permutation
|
||||
PhantomNodes viapoint;
|
||||
int perm = 0;
|
||||
for (auto it = current_trip.begin(); it != std::prev(current_trip.end()); ++it) {
|
||||
auto from_node = *it;
|
||||
auto to_node = *std::next(it);
|
||||
viapoint = PhantomNodes{phantom_node_vector[from_node][0], phantom_node_vector[to_node][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
min_loc_permutation[from_node] = perm;
|
||||
++perm;
|
||||
}
|
||||
// check dist between last and first location too
|
||||
viapoint = PhantomNodes{phantom_node_vector[*std::prev(current_trip.end())][0], phantom_node_vector[current_trip.front()][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
min_loc_permutation[*std::prev(current_trip.end())] = perm;
|
||||
}
|
||||
|
||||
void FarthestInsertionTSP(const std::vector<unsigned> & locations,
|
||||
const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// START FARTHEST INSERTION HERE
|
||||
// 1. start at a random round trip of 2 locations
|
||||
// 2. find the location that is the farthest away from the visited locations and whose insertion will make the round trip the longest
|
||||
// 3. add the found location to the current round trip such that round trip is the shortest
|
||||
// 4. repeat 2-3 until all locations are visited
|
||||
// 5. DONE!
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
const int number_of_locations = phantom_node_vector.size();
|
||||
const int size_of_component = locations.size();
|
||||
// list of the trip that will be found incrementally
|
||||
std::list<int> current_trip;
|
||||
// tracks which nodes have been already visited
|
||||
std::vector<bool> visited(number_of_locations, false);
|
||||
|
||||
auto max_dist = 0;
|
||||
auto index = -1;
|
||||
for (auto x : locations) {
|
||||
for (auto y : locations) {
|
||||
if (*(dist_table.begin() + x * number_of_locations + y) > max_dist) {
|
||||
max_dist = *(dist_table.begin() + x * number_of_locations + y);
|
||||
index = x * number_of_locations + y;
|
||||
}
|
||||
}
|
||||
}
|
||||
const int max_from = index / number_of_locations;
|
||||
const int max_to = index % number_of_locations;
|
||||
|
||||
visited[max_from] = true;
|
||||
visited[max_to] = true;
|
||||
current_trip.push_back(max_from);
|
||||
current_trip.push_back(max_to);
|
||||
|
||||
// add all other nodes missing (two nodes are already in the initial start trip)
|
||||
for (int j = 2; j < size_of_component; ++j) {
|
||||
auto shortest_max_tour = -1;
|
||||
int next_node = -1;
|
||||
std::list<int>::iterator min_max_insert;
|
||||
|
||||
// find unvisited loc i that is the farthest away from all other visited locs
|
||||
for (auto i : locations) {
|
||||
if (!visited[i]) {
|
||||
// longest_min_tour is the distance of the longest of all insertions with the minimal distance
|
||||
auto longest_min_tour = std::numeric_limits<int>::max();
|
||||
// following_loc is the location that comes after the location that is to be inserted
|
||||
std::list<int>::iterator following_loc;
|
||||
GetLongestRoundTrip(i, current_trip, dist_table, number_of_locations, longest_min_tour, following_loc);
|
||||
|
||||
// add the location to the current trip such that it results in the shortest total tour
|
||||
if (longest_min_tour > shortest_max_tour) {
|
||||
shortest_max_tour = longest_min_tour;
|
||||
next_node = i;
|
||||
min_max_insert = following_loc;
|
||||
}
|
||||
}
|
||||
}
|
||||
// mark as visited and insert node
|
||||
visited[next_node] = true;
|
||||
current_trip.insert(min_max_insert, next_node);
|
||||
}
|
||||
ComputeRouteAndPermutation(phantom_node_vector, current_trip, min_route, min_loc_permutation);
|
||||
}
|
||||
|
||||
void FarthestInsertionTSP(const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
@ -66,14 +191,11 @@ void FarthestInsertionTSP(const PhantomNodeArray & phantom_node_vector,
|
||||
// tracks which nodes have been already visited
|
||||
std::vector<bool> visited(number_of_locations, false);
|
||||
|
||||
// PrintDistTable(dist_table, number_of_locations);
|
||||
|
||||
|
||||
// find the pair of location with the biggest distance and make the pair the initial start trip
|
||||
const auto index = std::distance(dist_table.begin(), std::max_element(dist_table.begin(), dist_table.end()));
|
||||
const int max_from = index / number_of_locations;
|
||||
const int max_to = index % number_of_locations;
|
||||
|
||||
visited[max_from] = true;
|
||||
visited[max_to] = true;
|
||||
current_trip.push_back(max_from);
|
||||
@ -93,32 +215,7 @@ void FarthestInsertionTSP(const PhantomNodeArray & phantom_node_vector,
|
||||
// following_loc is the location that comes after the location that is to be inserted
|
||||
std::list<int>::iterator following_loc;
|
||||
|
||||
// for all nodes in the current trip find the best insertion resulting in the shortest path
|
||||
for (auto from_node = current_trip.begin(); from_node != std::prev(current_trip.end()); ++from_node) {
|
||||
auto to_node = std::next(from_node);
|
||||
|
||||
auto dist_from = *(dist_table.begin() + (*from_node * number_of_locations) + i);
|
||||
auto dist_to = *(dist_table.begin() + (i * number_of_locations) + *to_node);
|
||||
auto trip_dist = dist_from + dist_to - *(dist_table.begin() + (*from_node * number_of_locations) + *to_node);
|
||||
|
||||
// from all possible insertions to the current trip, choose the longest of all minimal insertions
|
||||
if (trip_dist < longest_min_tour) {
|
||||
longest_min_tour = trip_dist;
|
||||
following_loc = to_node;
|
||||
}
|
||||
}
|
||||
{ // check insertion between last and first location too
|
||||
auto from_node = std::prev(current_trip.end());
|
||||
auto to_node = current_trip.begin();
|
||||
|
||||
auto dist_from = *(dist_table.begin() + (*from_node * number_of_locations) + i);
|
||||
auto dist_to = *(dist_table.begin() + (i * number_of_locations) + *to_node);
|
||||
auto trip_dist = dist_from + dist_to - *(dist_table.begin() + (*from_node * number_of_locations) + *to_node);
|
||||
if (trip_dist < longest_min_tour) {
|
||||
longest_min_tour = trip_dist;
|
||||
following_loc = to_node;
|
||||
}
|
||||
}
|
||||
GetLongestRoundTrip(i, current_trip, dist_table, number_of_locations, longest_min_tour, following_loc);
|
||||
|
||||
// add the location to the current trip such that it results in the shortest total tour
|
||||
if (longest_min_tour > shortest_max_tour) {
|
||||
@ -133,24 +230,7 @@ void FarthestInsertionTSP(const PhantomNodeArray & phantom_node_vector,
|
||||
current_trip.insert(min_max_insert, next_node);
|
||||
}
|
||||
|
||||
// given he final trip, compute total distance and return the route and location permutation
|
||||
PhantomNodes viapoint;
|
||||
int perm = 0;
|
||||
for (auto it = current_trip.begin(); it != std::prev(current_trip.end()); ++it) {
|
||||
auto from_node = *it;
|
||||
auto to_node = *std::next(it);
|
||||
|
||||
viapoint = PhantomNodes{phantom_node_vector[from_node][0], phantom_node_vector[to_node][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
|
||||
min_loc_permutation[from_node] = perm;
|
||||
++perm;
|
||||
}
|
||||
{ // check dist between last and first location too
|
||||
viapoint = PhantomNodes{phantom_node_vector[*std::prev(current_trip.end())][0], phantom_node_vector[current_trip.front()][0]};
|
||||
min_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
min_loc_permutation[*std::prev(current_trip.end())] = perm;
|
||||
}
|
||||
ComputeRouteAndPermutation(phantom_node_vector, current_trip, min_route, min_loc_permutation);
|
||||
}
|
||||
|
||||
|
||||
|
@ -48,6 +48,128 @@ namespace osrm
|
||||
namespace tsp
|
||||
{
|
||||
|
||||
void NearestNeighbourTSP(const std::vector<unsigned> & locations,
|
||||
const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
std::vector<int> & min_loc_permutation) {
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// START GREEDY NEAREST NEIGHBOUR HERE
|
||||
// 1. grab a random location and mark as starting point
|
||||
// 2. find the nearest unvisited neighbour, set it as the current location and mark as visited
|
||||
// 3. repeat 2 until there is no unvisited location
|
||||
// 4. return route back to starting point
|
||||
// 5. compute route
|
||||
// 6. repeat 1-5 with different starting points and choose iteration with shortest trip
|
||||
// 7. DONE!
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
const auto number_of_locations = phantom_node_vector.size();
|
||||
const int size_of_component = locations.size();
|
||||
min_route.shortest_path_length = std::numeric_limits<int>::max();
|
||||
|
||||
// ALWAYS START AT ANOTHER STARTING POINT
|
||||
for(auto start_node : locations)
|
||||
{
|
||||
int curr_node = start_node;
|
||||
InternalRouteResult raw_route;
|
||||
//TODO: Should we always use the same vector or does it not matter at all because of loop scope?
|
||||
std::vector<int> loc_permutation(number_of_locations, -1);
|
||||
loc_permutation[start_node] = 0;
|
||||
// visited[i] indicates whether node i was already visited by the salesman
|
||||
std::vector<bool> visited(number_of_locations, false);
|
||||
visited[start_node] = true;
|
||||
|
||||
PhantomNodes viapoint;
|
||||
// 3. REPEAT FOR EVERY UNVISITED NODE
|
||||
int trip_dist = 0;
|
||||
for(int via_point = 1; via_point < size_of_component; ++via_point)
|
||||
{
|
||||
int min_dist = std::numeric_limits<int>::max();
|
||||
int min_id = -1;
|
||||
|
||||
// 2. FIND NEAREST NEIGHBOUR
|
||||
for (auto next : locations) {
|
||||
if(!visited[next] &&
|
||||
*(dist_table.begin() + curr_node * number_of_locations + next) < min_dist) {
|
||||
min_dist = *(dist_table.begin() + curr_node * number_of_locations + next);
|
||||
min_id = next;
|
||||
}
|
||||
}
|
||||
loc_permutation[min_id] = via_point;
|
||||
visited[min_id] = true;
|
||||
viapoint = PhantomNodes{phantom_node_vector[curr_node][0], phantom_node_vector[min_id][0]};
|
||||
raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
trip_dist += min_dist;
|
||||
curr_node = min_id;
|
||||
}
|
||||
|
||||
// 4. ROUTE BACK TO STARTING POINT
|
||||
viapoint = PhantomNodes{raw_route.segment_end_coordinates.back().target_phantom, phantom_node_vector[start_node][0]};
|
||||
raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
|
||||
// check round trip with this starting point is shorter than the shortest round trip found till now
|
||||
if (trip_dist < min_route.shortest_path_length) {
|
||||
min_route = raw_route;
|
||||
min_route.shortest_path_length = trip_dist;
|
||||
//TODO: this gets copied right? fix this
|
||||
min_loc_permutation = loc_permutation;
|
||||
}
|
||||
}
|
||||
|
||||
// // ALWAYS START AT ANOTHER STARTING POINT
|
||||
// for(auto start_node : locations) {
|
||||
// SimpleLogger().Write() << "STARTING AT " << start_node;
|
||||
// int curr_node = start_node;
|
||||
// InternalRouteResult raw_route;
|
||||
// //TODO: Should we always use the same vector or does it not matter at all because of loop scope?
|
||||
// std::vector<int> loc_permutation(number_of_locations, -1);
|
||||
|
||||
// // visited[i] indicates whether node i was already visited by the salesman
|
||||
// std::vector<bool> visited(number_of_locations, false);
|
||||
// visited[start_node] = true;
|
||||
// loc_permutation[start_node] = 0;
|
||||
|
||||
// PhantomNodes viapoint;
|
||||
// // 3. REPEAT FOR EVERY UNVISITED NODE
|
||||
// int trip_dist = 0;
|
||||
// for(int via_point = 1; via_point < size_of_component; ++via_point)
|
||||
// {
|
||||
// int min_dist = std::numeric_limits<int>::max();
|
||||
// int min_id = -1;
|
||||
|
||||
// // 2. FIND NEAREST NEIGHBOUR
|
||||
// for (auto next : locations) {
|
||||
// if(!visited[next] &&
|
||||
// *(dist_table.begin() + curr_node * number_of_locations + next) < min_dist) {
|
||||
// min_dist = *(dist_table.begin() + curr_node * number_of_locations + next);
|
||||
// min_id = next;
|
||||
// }
|
||||
// }
|
||||
|
||||
// loc_permutation[min_id] = via_point;
|
||||
// visited[min_id] = true;
|
||||
// SimpleLogger().Write() << "MOVING TO " << min_id;
|
||||
// viapoint = PhantomNodes{phantom_node_vector[curr_node][0], phantom_node_vector[min_id][0]};
|
||||
// raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
// trip_dist += min_dist;
|
||||
// curr_node = min_id;
|
||||
// }
|
||||
|
||||
// // 4. ROUTE BACK TO STARTING POINT
|
||||
// viapoint = PhantomNodes{raw_route.segment_end_coordinates.back().target_phantom, phantom_node_vector[start_node][0]};
|
||||
// raw_route.segment_end_coordinates.emplace_back(viapoint);
|
||||
|
||||
// // check round trip with this starting point is shorter than the shortest round trip found till now
|
||||
// if (trip_dist < min_route.shortest_path_length) {
|
||||
// min_route = raw_route;
|
||||
// min_route.shortest_path_length = trip_dist;
|
||||
// //TODO: this gets copied right? fix this
|
||||
// min_loc_permutation = loc_permutation;
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
void NearestNeighbourTSP(const PhantomNodeArray & phantom_node_vector,
|
||||
const std::vector<EdgeWeight> & dist_table,
|
||||
InternalRouteResult & min_route,
|
||||
|
Loading…
Reference in New Issue
Block a user