fixes assignment for basic turn types / invalid ramp assignment

This commit is contained in:
Moritz Kobitzsch 2016-03-07 11:09:21 +01:00 committed by Patrick Niklaus
parent e00bda37a5
commit 9e95d1f1fd
2 changed files with 115 additions and 144 deletions

View File

@ -99,14 +99,6 @@ std::vector<TurnCandidate> handleRoundabouts(const NodeID from,
std::vector<TurnCandidate> turn_candidates,
const util::NodeBasedDynamicGraph &node_based_graph);
// A Basic junction is a junction not requiring special treatment. It cannot contain anything
// but streets of lesser priority than trunks and ramps (of any type). No roundabouts or motorway
// like types.
bool isBasicJunction(const NodeID from,
const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates,
const util::NodeBasedDynamicGraph &node_based_graph);
// Indicates a Junction containing a motoryway
bool isMotorwayJunction(const NodeID from,
const EdgeID via_edge,
@ -121,7 +113,8 @@ TurnType findBasicTurnType(const NodeID from,
// Get the Instruction for an obvious turn
// Instruction will be a silent instruction
TurnInstruction getInstructionForObvious(const NodeID from,
TurnInstruction getInstructionForObvious(const std::size_t number_of_candidates,
const NodeID from,
const EdgeID via_edge,
const TurnCandidate &candidate,
const util::NodeBasedDynamicGraph &node_based_graph);

View File

@ -101,27 +101,27 @@ std::vector<TurnCandidate> getTurns(const NodeID from,
node_based_graph);
}
if (detail::isBasicJunction(from, via_edge, turn_candidates, node_based_graph) &&
turn_candidates.size() <= 4) // TODO change when larger junctions are handled
if (turn_candidates.size() <= 4) // TODO change when larger junctions are handled
{
if (turn_candidates.size() == 1)
{
turn_candidates = detail::handleOneWayTurn(from, via_edge, std::move(turn_candidates),
node_based_graph);
}
if (turn_candidates.size() == 2)
else if (turn_candidates.size() == 2)
{
turn_candidates = detail::handleTwoWayTurn(from, via_edge, std::move(turn_candidates),
node_based_graph);
}
if (turn_candidates.size() == 3)
else if (turn_candidates.size() == 3)
{
detail::handleThreeWayTurn(from, via_edge, std::move(turn_candidates),
turn_candidates = detail::handleThreeWayTurn(from, via_edge, std::move(turn_candidates),
node_based_graph);
}
if (turn_candidates.size() == 4)
else if (turn_candidates.size() == 4)
{
detail::handleFourWayTurn(from, via_edge, std::move(turn_candidates), node_based_graph);
turn_candidates = detail::handleFourWayTurn(from, via_edge, std::move(turn_candidates),
node_based_graph);
}
else
{
@ -295,7 +295,8 @@ fallbackTurnAssignmentMotorway(std::vector<TurnCandidate> turn_candidates,
candidate.instruction = {type, DirectionModifier::Straight};
else
{
candidate.instruction = {type, candidate.angle > STRAIGHT_ANGLE
candidate.instruction = {type,
candidate.angle > STRAIGHT_ANGLE
? DirectionModifier::SlightLeft
: DirectionModifier::SlightRight};
}
@ -431,8 +432,8 @@ std::vector<TurnCandidate> handleFromMotorway(const NodeID from,
{
BOOST_ASSERT(!isRampClass(turn_candidates[1].eid, node_based_graph));
turn_candidates[1].instruction =
noTurnOrNewName(from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph);
}
else
{
@ -477,8 +478,8 @@ std::vector<TurnCandidate> handleFromMotorway(const NodeID from,
{
if (exiting_motorways == 2 && turn_candidates.size() == 2)
{
turn_candidates[1].instruction =
getInstructionForObvious(from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph);
util::SimpleLogger().Write(logWARNING)
<< "Disabled U-Turn on a freeway at "
<< localizer(node_based_graph.GetTarget(via_edge));
@ -542,9 +543,8 @@ std::vector<TurnCandidate> handleFromMotorway(const NodeID from,
auto coord = localizer(node_based_graph.GetTarget(via_edge));
util::SimpleLogger().Write(logWARNING)
<< "Found motorway junction with more than "
"2 exiting motorways or additional ramps at "
<< std::setprecision(12) << toFloating(coord.lat) << " "
<< toFloating(coord.lon);
"2 exiting motorways or additional ramps at " << std::setprecision(12)
<< toFloating(coord.lat) << " " << toFloating(coord.lon);
fallbackTurnAssignmentMotorway(turn_candidates, node_based_graph);
}
} // done for more than one highway exit
@ -572,8 +572,8 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
BOOST_ASSERT(!turn_candidates[0].valid);
BOOST_ASSERT(isMotorwayClass(turn_candidates[1].eid, node_based_graph));
turn_candidates[1].instruction =
noTurnOrNewName(from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph);
}
else if (turn_candidates.size() == 3)
{
@ -604,7 +604,8 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
}
else // passing by the end of a motorway
turn_candidates[1].instruction =
noTurnOrNewName(from, via_edge, turn_candidates[1], node_based_graph);
getInstructionForObvious(turn_candidates.size(), from, via_edge,
turn_candidates[1], node_based_graph);
}
else
{
@ -622,7 +623,8 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
}
else // passing the end of a highway
turn_candidates[1].instruction =
noTurnOrNewName(from, via_edge, turn_candidates[1], node_based_graph);
getInstructionForObvious(turn_candidates.size(), from, via_edge,
turn_candidates[1], node_based_graph);
}
}
else
@ -680,8 +682,8 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
}
else if (isMotorwayClass(edge_data.road_classification.road_class))
{
candidate.instruction = {TurnType::Merge, passed_highway_entry
? DirectionModifier::SlightRight
candidate.instruction = {TurnType::Merge,
passed_highway_entry ? DirectionModifier::SlightRight
: DirectionModifier::SlightLeft};
}
else
@ -732,42 +734,6 @@ handleMotorwayJunction(const NodeID from,
}
}
bool isBasicJunction(const NodeID from,
const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates,
const util::NodeBasedDynamicGraph &node_based_graph)
{
(void)from, (void)turn_candidates;
for (const auto &candidate : turn_candidates)
{
const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (out_data.road_classification.road_class == FunctionalRoadClass::MOTORWAY ||
out_data.road_classification.road_class == FunctionalRoadClass::TRUNK)
return false;
}
const auto &in_data = node_based_graph.GetEdgeData(via_edge);
return in_data.road_classification.road_class != FunctionalRoadClass::MOTORWAY &&
in_data.road_classification.road_class != FunctionalRoadClass::TRUNK;
/*
bool on_ramp = false;
if (isRampClass(in_data.road_classification.road_class))
on_ramp = true;
std::size_t ramp_count = 0;
for (const auto &candidate : turn_candidates)
{
const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (isRampClass(out_data.road_classification.road_class))
ramp_count++;
}
return (on_ramp && ramp_count == turn_candidates.size()) || (!on_ramp && ramp_count == 0);
*/
}
bool isMotorwayJunction(const NodeID from,
const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates,
@ -831,41 +797,34 @@ TurnType findBasicTurnType(const NodeID from,
return TurnType::Turn;
}
TurnInstruction noTurnOrNewName(const NodeID from,
TurnInstruction getInstructionForObvious(const std::size_t num_candidates,
const NodeID from,
const EdgeID via_edge,
const TurnCandidate &candidate,
const util::NodeBasedDynamicGraph &node_based_graph)
{
(void)from;
const auto &in_data = node_based_graph.GetEdgeData(via_edge);
const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
if (in_data.name_id == out_data.name_id)
const auto type = findBasicTurnType(from, via_edge, candidate, node_based_graph);
if (type == TurnType::Ramp)
{
if (angularDeviation(candidate.angle, 0) > 0.01)
return TurnInstruction::SUPPRESSED(getTurnDirection(candidate.angle));
return {TurnType::Ramp, getTurnDirection(candidate.angle)};
}
if (angularDeviation(candidate.angle, 0) < 0.01)
{
return {TurnType::Turn, DirectionModifier::UTurn};
}
else
if (type == TurnType::Turn)
{
return {TurnType::NewName, getTurnDirection(candidate.angle)};
}
}
TurnInstruction getInstructionForObvious(const NodeID from,
const EdgeID via_edge,
const TurnCandidate &candidate,
const util::NodeBasedDynamicGraph &node_based_graph)
{
if (findBasicTurnType(from, via_edge, candidate, node_based_graph) == TurnType::Turn)
BOOST_ASSERT(type == TurnType::Continue);
if (num_candidates > 2)
{
return noTurnOrNewName(from, via_edge, candidate, node_based_graph);
return {TurnType::Suppressed, getTurnDirection(candidate.angle)};
}
else
{
return {TurnType::Ramp, getTurnDirection(candidate.angle)};
return {TurnType::NoTurn, getTurnDirection(candidate.angle)};
}
}
@ -899,8 +858,11 @@ std::vector<TurnCandidate> handleTwoWayTurn(const NodeID from,
{
BOOST_ASSERT(turn_candidates[0].angle < 0.001);
turn_candidates[1].instruction =
getInstructionForObvious(from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph);
if (turn_candidates[1].instruction.type == TurnType::Suppressed)
turn_candidates[1].instruction.type = TurnType::NoTurn;
#if PRINT_DEBUG_CANDIDATES
std::cout << "Basic Two Turns Candidates:\n";
@ -942,10 +904,13 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph))
{
if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) <
MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) >
FUZZY_ANGLE_DIFFERENCE)
{
turn_candidates[1].instruction = getInstructionForObvious(
from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction =
getInstructionForObvious(turn_candidates.size(), from, via_edge,
turn_candidates[1], node_based_graph);
if (turn_candidates[1].instruction.type == TurnType::Turn)
turn_candidates[1].instruction = {TurnType::Fork,
DirectionModifier::SlightRight};
@ -961,10 +926,13 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
findBasicTurnType(from, via_edge, turn_candidates[2], node_based_graph))
{
if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) <
MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) >
FUZZY_ANGLE_DIFFERENCE)
{
turn_candidates[2].instruction = getInstructionForObvious(
from, via_edge, turn_candidates[2], node_based_graph);
turn_candidates[2].instruction =
getInstructionForObvious(turn_candidates.size(), from, via_edge,
turn_candidates[2], node_based_graph);
if (turn_candidates[2].instruction.type == TurnType::Turn)
turn_candidates[2].instruction = {TurnType::Fork,
DirectionModifier::SlightRight};
@ -980,19 +948,20 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
else
{
if (turn_candidates[1].valid)
turn_candidates[1].instruction =
getInstructionForObvious(from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph);
if (turn_candidates[2].valid)
turn_candidates[2].instruction =
getInstructionForObvious(from, via_edge, turn_candidates[2], node_based_graph);
turn_candidates[2].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[2], node_based_graph);
}
}
// T Intersection
//
// OOOOOOO T OOOOOOOO
// I
// I
// I
/* T Intersection
OOOOOOO T OOOOOOOO
I
I
I
*/
else if (angularDeviation(turn_candidates[1].angle, 90) < NARROW_TURN_ANGLE &&
angularDeviation(turn_candidates[2].angle, 270) < NARROW_TURN_ANGLE &&
angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) >
@ -1015,11 +984,12 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
turn_candidates[2].instruction = {TurnType::Ramp, DirectionModifier::Left};
}
}
// T Intersection, Cross left
// O
// O
// O
// IIIIIIII - OOOOOOOOOO
/* T Intersection, Cross left
O
O
O
IIIIIIII - OOOOOOOOOO
*/
else if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
angularDeviation(turn_candidates[2].angle, 270) < NARROW_TURN_ANGLE &&
angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) >
@ -1029,8 +999,8 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
{
if (TurnType::Ramp !=
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph))
turn_candidates[1].instruction =
getInstructionForObvious(from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph);
else
turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::Straight};
}
@ -1041,20 +1011,21 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
DirectionModifier::Left};
}
}
// T Intersection, Cross right
//
// IIIIIIII T OOOOOOOOOO
// O
// O
// O
/* T Intersection, Cross right
IIIIIIII T OOOOOOOOOO
O
O
O
*/
else if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
angularDeviation(turn_candidates[1].angle, 90) < NARROW_TURN_ANGLE &&
angularDeviation(turn_candidates[1].angle, turn_candidates[2].angle) >
NARROW_TURN_ANGLE)
{
if (turn_candidates[2].valid)
turn_candidates[2].instruction =
getInstructionForObvious(from, via_edge, turn_candidates[2], node_based_graph);
turn_candidates[2].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[2], node_based_graph);
if (turn_candidates[1].valid)
turn_candidates[1].instruction = {
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph),
@ -1065,8 +1036,8 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
node_based_graph.GetEdgeData(turn_candidates[1].eid).name_id ==
node_based_graph.GetEdgeData(turn_candidates[2].eid).name_id)
{
const auto findTurn = [isObviousOfTwo](const TurnCandidate turn,
const TurnCandidate other) -> TurnInstruction
const auto findTurn = [isObviousOfTwo](const TurnCandidate turn, const TurnCandidate other)
-> TurnInstruction
{
return {isObviousOfTwo(turn, other) ? TurnType::Merge : TurnType::Turn,
getTurnDirection(turn.angle)};
@ -1151,7 +1122,7 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
// TODO handle obviousness, Handle Merges
#if PRINT_DEBUG_CANDIDATES
std::cout << "Basic Turn Candidates:\n";
std::cout << "Basic Three Turn Candidates:\n";
for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
@ -1179,8 +1150,8 @@ std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
turn_candidates[1].instruction = {type, DirectionModifier::Right};
}
{ // Straight
turn_candidates[2].instruction =
getInstructionForObvious(from, via_edge, turn_candidates[2], node_based_graph);
turn_candidates[2].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[2], node_based_graph);
}
{ // Left
const auto type =
@ -1244,7 +1215,7 @@ std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
}
}
#if PRINT_DEBUG_CANDIDATES
std::cout << "Basic Turn Candidates:\n";
std::cout << "Basic Four Turn Candidates:\n";
for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
@ -1262,7 +1233,7 @@ std::vector<TurnCandidate> handleComplexTurn(const NodeID from,
(void)via_edge; // FIXME unused
(void)node_based_graph; // FIXME unused
#if PRINT_DEBUG_CANDIDATES
std::cout << "Basic Turn Candidates:\n";
std::cout << "Basic Complex Turn Candidates:\n";
for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
@ -1562,8 +1533,8 @@ bool isObviousChoice(const EdgeID via_eid,
const auto &candidate_to_the_right = turn_candidates[getRight(turn_index)];
const auto hasValidRatio = [&](const TurnCandidate &left, const TurnCandidate &center,
const TurnCandidate &right)
const auto hasValidRatio =
[&](const TurnCandidate &left, const TurnCandidate &center, const TurnCandidate &right)
{
auto angle_left = (left.angle > 180) ? angularDeviation(left.angle, STRAIGHT_ANGLE) : 180;
auto angle_right =
@ -1895,9 +1866,8 @@ std::vector<TurnCandidate> mergeSegregatedRoads(const NodeID from_node,
std::cout << "Second: " << second_data.name_id << " " << second_data.travel_mode << " "
<< second_data.road_classification.road_class << " "
<< turn_candidates[second].angle << " " << second_data.reversed << std::endl;
std::cout << "Deviation: "
<< angularDeviation(turn_candidates[first].angle, turn_candidates[second].angle)
<< std::endl;
std::cout << "Deviation: " << angularDeviation(turn_candidates[first].angle,
turn_candidates[second].angle) << std::endl;
#endif
return first_data.name_id != INVALID_NAME_ID && first_data.name_id == second_data.name_id &&
@ -2035,7 +2005,13 @@ std::vector<TurnCandidate> handleConflicts(const NodeID from,
left.instruction.direction_modifier == right.instruction.direction_modifier;
};
(void)isConflict; // FIXME
#if PRINT_DEBUG_CANDIDATES
std::cout << "Post Conflict Resolution Candidates:\n";
for (auto tc : turn_candidates)
std::cout << "\t" << tc.toString() << " "
<< (int)node_based_graph.GetEdgeData(tc.eid).road_classification.road_class
<< " name: " << node_based_graph.GetEdgeData(tc.eid).name_id << std::endl;
#endif
return turn_candidates;
}
@ -2047,7 +2023,8 @@ void assignFork(const EdgeID via_edge,
const auto &in_data = node_based_graph.GetEdgeData(via_edge);
{ // left fork
const auto &out_data = node_based_graph.GetEdgeData(left.eid);
if (angularDeviation(left.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
if (angularDeviation(left.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(right.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE)
{
if (requiresAnnouncedment(in_data, out_data))
{
@ -2065,7 +2042,8 @@ void assignFork(const EdgeID via_edge,
}
{ // right fork
const auto &out_data = node_based_graph.GetEdgeData(right.eid);
if (angularDeviation(right.angle, 180) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
if (angularDeviation(right.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(left.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE)
{
if (requiresAnnouncedment(in_data, out_data))
{