Refactoring shortest path search variable names

This commit is contained in:
Dennis Luxen 2013-09-21 22:10:41 +02:00
parent 4520e04d37
commit 9812eaaca7

View File

@ -32,27 +32,41 @@ class ShortestPathRouting : public BasicRoutingInterface<DataFacadeT>{
typedef BasicRoutingInterface<DataFacadeT> super;
typedef SearchEngineData::QueryHeap QueryHeap;
SearchEngineData & engine_working_data;
public:
ShortestPathRouting( DataFacadeT * facade, SearchEngineData & engine_working_data) : super(facade), engine_working_data(engine_working_data) {}
ShortestPathRouting(
DataFacadeT * facade,
SearchEngineData & engine_working_data
) :
super(facade),
engine_working_data(engine_working_data)
{}
~ShortestPathRouting() {}
void operator()(std::vector<PhantomNodes> & phantomNodesVector, RawRouteData & rawRouteData) const {
BOOST_FOREACH(const PhantomNodes & phantomNodePair, phantomNodesVector) {
if(!phantomNodePair.AtLeastOnePhantomNodeIsUINTMAX()) {
rawRouteData.lengthOfShortestPath = rawRouteData.lengthOfAlternativePath = INT_MAX;
void operator()(
std::vector<PhantomNodes> & phantom_nodes_vector,
RawRouteData & raw_route_data
) const {
BOOST_FOREACH(
const PhantomNodes & phantom_node_pair,
phantom_nodes_vector
){
if(!phantom_node_pair.AtLeastOnePhantomNodeIsUINTMAX()) {
raw_route_data.lengthOfShortestPath = INT_MAX;
raw_route_data.lengthOfAlternativePath = INT_MAX;
return;
}
}
int distance1 = 0;
int distance2 = 0;
bool searchFrom1stStartNode = true;
bool searchFrom2ndStartNode = true;
bool search_from_1st_node = true;
bool search_from_2nd_node = true;
NodeID middle1 = UINT_MAX;
NodeID middle2 = UINT_MAX;
std::vector<NodeID> packedPath1;
std::vector<NodeID> packedPath2;
std::vector<NodeID> packed_path1;
std::vector<NodeID> packed_path2;
engine_working_data.InitializeOrClearFirstThreadLocalStorage(
super::facade->GetNumberOfNodes()
@ -70,139 +84,231 @@ public:
QueryHeap & reverse_heap2 = *(engine_working_data.backwardHeap2);
//Get distance to next pair of target nodes.
BOOST_FOREACH(const PhantomNodes & phantomNodePair, phantomNodesVector) {
BOOST_FOREACH(const PhantomNodes & phantom_node_pair, phantom_nodes_vector){
forward_heap1.Clear(); forward_heap2.Clear();
reverse_heap1.Clear(); reverse_heap2.Clear();
int _localUpperbound1 = INT_MAX;
int _localUpperbound2 = INT_MAX;
int local_upper_bound1 = INT_MAX;
int local_upper_bound2 = INT_MAX;
middle1 = UINT_MAX;
middle2 = UINT_MAX;
//insert new starting nodes into forward heap, adjusted by previous distances.
if(searchFrom1stStartNode) {
forward_heap1.Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode);
// INFO("fw1: " << phantomNodePair.startPhantom.edgeBasedNode << "´, w: " << -phantomNodePair.startPhantom.weight1);
forward_heap2.Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode);
// INFO("fw2: " << phantomNodePair.startPhantom.edgeBasedNode << "´, w: " << -phantomNodePair.startPhantom.weight1);
if(search_from_1st_node) {
forward_heap1.Insert(
phantom_node_pair.startPhantom.edgeBasedNode,
-phantom_node_pair.startPhantom.weight1,
phantom_node_pair.startPhantom.edgeBasedNode
);
// INFO("fw1: " << phantom_node_pair.startPhantom.edgeBasedNode << "´, w: " << -phantom_node_pair.startPhantom.weight1);
forward_heap2.Insert(
phantom_node_pair.startPhantom.edgeBasedNode,
-phantom_node_pair.startPhantom.weight1,
phantom_node_pair.startPhantom.edgeBasedNode
);
// INFO("fw2: " << phantom_node_pair.startPhantom.edgeBasedNode << "´, w: " << -phantom_node_pair.startPhantom.weight1);
}
if(phantomNodePair.startPhantom.isBidirected() && searchFrom2ndStartNode) {
forward_heap1.Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1);
// INFO("fw1: " << phantomNodePair.startPhantom.edgeBasedNode+1 << "´, w: " << -phantomNodePair.startPhantom.weight2);
forward_heap2.Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1);
// INFO("fw2: " << phantomNodePair.startPhantom.edgeBasedNode+1 << "´, w: " << -phantomNodePair.startPhantom.weight2);
if(phantom_node_pair.startPhantom.isBidirected() && search_from_2nd_node) {
forward_heap1.Insert(
phantom_node_pair.startPhantom.edgeBasedNode+1,
-phantom_node_pair.startPhantom.weight2,
phantom_node_pair.startPhantom.edgeBasedNode+1
);
// INFO("fw1: " << phantom_node_pair.startPhantom.edgeBasedNode+1 << "´, w: " << -phantom_node_pair.startPhantom.weight2);
forward_heap2.Insert(
phantom_node_pair.startPhantom.edgeBasedNode+1,
-phantom_node_pair.startPhantom.weight2,
phantom_node_pair.startPhantom.edgeBasedNode+1
);
// INFO("fw2: " << phantom_node_pair.startPhantom.edgeBasedNode+1 << "´, w: " << -phantom_node_pair.startPhantom.weight2);
}
//insert new backward nodes into backward heap, unadjusted.
reverse_heap1.Insert(phantomNodePair.targetPhantom.edgeBasedNode, phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.edgeBasedNode);
// INFO("rv1: " << phantomNodePair.targetPhantom.edgeBasedNode << ", w;" << phantomNodePair.targetPhantom.weight1 );
if(phantomNodePair.targetPhantom.isBidirected() ) {
reverse_heap2.Insert(phantomNodePair.targetPhantom.edgeBasedNode+1, phantomNodePair.targetPhantom.weight2, phantomNodePair.targetPhantom.edgeBasedNode+1);
// INFO("rv2: " << phantomNodePair.targetPhantom.edgeBasedNode+1 << ", w;" << phantomNodePair.targetPhantom.weight2 );
reverse_heap1.Insert(
phantom_node_pair.targetPhantom.edgeBasedNode,
phantom_node_pair.targetPhantom.weight1,
phantom_node_pair.targetPhantom.edgeBasedNode
);
// INFO("rv1: " << phantom_node_pair.targetPhantom.edgeBasedNode << ", w;" << phantom_node_pair.targetPhantom.weight1 );
if(phantom_node_pair.targetPhantom.isBidirected() ) {
reverse_heap2.Insert(
phantom_node_pair.targetPhantom.edgeBasedNode+1,
phantom_node_pair.targetPhantom.weight2,
phantom_node_pair.targetPhantom.edgeBasedNode+1
);
// INFO("rv2: " << phantom_node_pair.targetPhantom.edgeBasedNode+1 << ", w;" << phantom_node_pair.targetPhantom.weight2 );
}
const int forward_offset = phantomNodePair.startPhantom.weight1 + (phantomNodePair.startPhantom.isBidirected() ? phantomNodePair.startPhantom.weight2 : 0);
const int reverse_offset = phantomNodePair.targetPhantom.weight1 + (phantomNodePair.targetPhantom.isBidirected() ? phantomNodePair.targetPhantom.weight2 : 0);
const int forward_offset = phantom_node_pair.startPhantom.weight1 + (phantom_node_pair.startPhantom.isBidirected() ? phantom_node_pair.startPhantom.weight2 : 0);
const int reverse_offset = phantom_node_pair.targetPhantom.weight1 + (phantom_node_pair.targetPhantom.isBidirected() ? phantom_node_pair.targetPhantom.weight2 : 0);
//run two-Target Dijkstra routing step.
while(0 < (forward_heap1.Size() + reverse_heap1.Size() )){
if(0 < forward_heap1.Size()){
super::RoutingStep(forward_heap1, reverse_heap1, &middle1, &_localUpperbound1, forward_offset, true);
if( !forward_heap1.Empty()){
super::RoutingStep(
forward_heap1,
reverse_heap1,
&middle1,
&local_upper_bound1,
forward_offset,
true
);
}
if(0 < reverse_heap1.Size() ){
super::RoutingStep(reverse_heap1, forward_heap1, &middle1, &_localUpperbound1, reverse_offset, false);
if( !reverse_heap1.Empty() ){
super::RoutingStep(
reverse_heap1,
forward_heap1,
&middle1,
&local_upper_bound1,
reverse_offset,
false
);
}
}
if(0 < reverse_heap2.Size()) {
if( !reverse_heap2.Empty() ) {
while(0 < (forward_heap2.Size() + reverse_heap2.Size() )){
if(0 < forward_heap2.Size()){
super::RoutingStep(forward_heap2, reverse_heap2, &middle2, &_localUpperbound2, forward_offset, true);
if( !forward_heap2.Empty() ){
super::RoutingStep(
forward_heap2,
reverse_heap2,
&middle2,
&local_upper_bound2,
forward_offset,
true
);
}
if(0 < reverse_heap2.Size()){
super::RoutingStep(reverse_heap2, forward_heap2, &middle2, &_localUpperbound2, reverse_offset, false);
if( !reverse_heap2.Empty() ){
super::RoutingStep(
reverse_heap2,
forward_heap2,
&middle2,
&local_upper_bound2,
reverse_offset,
false
);
}
}
}
//No path found for both target nodes?
if((INT_MAX == _localUpperbound1) && (INT_MAX == _localUpperbound2)) {
rawRouteData.lengthOfShortestPath = rawRouteData.lengthOfAlternativePath = INT_MAX;
if(
(INT_MAX == local_upper_bound1) &&
(INT_MAX == local_upper_bound2)
) {
raw_route_data.lengthOfShortestPath = INT_MAX;
raw_route_data.lengthOfAlternativePath = INT_MAX;
return;
}
if(UINT_MAX == middle1) {
searchFrom1stStartNode = false;
search_from_1st_node = false;
}
if(UINT_MAX == middle2) {
searchFrom2ndStartNode = false;
search_from_2nd_node = false;
}
//Was at most one of the two paths not found?
assert(!(INT_MAX == distance1 && INT_MAX == distance2));
assert(INT_MAX != distance1 || INT_MAX != distance2);
//Unpack paths if they exist
std::vector<NodeID> temporaryPackedPath1;
std::vector<NodeID> temporaryPackedPath2;
if(INT_MAX != _localUpperbound1) {
super::RetrievePackedPathFromHeap(forward_heap1, reverse_heap1, middle1, temporaryPackedPath1);
std::vector<NodeID> temporary_packed_path1;
std::vector<NodeID> temporary_packed_path2;
if(INT_MAX != local_upper_bound1) {
super::RetrievePackedPathFromHeap(
forward_heap1,
reverse_heap1,
middle1,
temporary_packed_path1
);
}
if(INT_MAX != _localUpperbound2) {
super::RetrievePackedPathFromHeap(forward_heap2, reverse_heap2, middle2, temporaryPackedPath2);
if(INT_MAX != local_upper_bound2) {
super::RetrievePackedPathFromHeap(
forward_heap2,
reverse_heap2,
middle2,
temporary_packed_path2
);
}
//if one of the paths was not found, replace it with the other one.
if(0 == temporaryPackedPath1.size()) {
temporaryPackedPath1.insert(temporaryPackedPath1.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end());
_localUpperbound1 = _localUpperbound2;
if( temporary_packed_path1.empty() ) {
temporary_packed_path1.insert(
temporary_packed_path1.end(),
temporary_packed_path2.begin(),
temporary_packed_path2.end()
);
local_upper_bound1 = local_upper_bound2;
}
if(0 == temporaryPackedPath2.size()) {
temporaryPackedPath2.insert(temporaryPackedPath2.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end());
_localUpperbound2 = _localUpperbound1;
if( temporary_packed_path2.empty() ) {
temporary_packed_path2.insert(
temporary_packed_path2.end(),
temporary_packed_path1.begin(),
temporary_packed_path1.end()
);
local_upper_bound2 = local_upper_bound1;
}
assert(0 < temporaryPackedPath1.size() && 0 < temporaryPackedPath2.size());
assert(temporary_packed_path1.empty() && temporary_packed_path2.empty());
//Plug paths together, s.t. end of packed path is begin of temporary packed path
if(0 < packedPath1.size() && 0 < packedPath2.size() ) {
if( *(temporaryPackedPath1.begin()) == *(temporaryPackedPath2.begin())) {
if( !packed_path1.empty() && !packed_path2.empty() ) {
if( temporary_packed_path1.front() == temporary_packed_path2.front() ) {
//both new route segments start with the same node, thus one of the packedPath must go.
assert( (packedPath1.size() == packedPath2.size() ) || (*(packedPath1.end()-1) != *(packedPath2.end()-1)) );
if( *(packedPath1.end()-1) == *(temporaryPackedPath1.begin())) {
packedPath2.clear();
packedPath2.insert(packedPath2.end(), packedPath1.begin(), packedPath1.end());
assert( (packed_path1.size() == packed_path2.size() ) || (*(packed_path1.end()-1) != *(packed_path2.end()-1)) );
if( packed_path1.back() == temporary_packed_path1.front()) {
packed_path2.clear();
packed_path2.insert(
packed_path2.end(),
packed_path1.begin(),
packed_path1.end()
);
distance2 = distance1;
} else {
packedPath1.clear();
packedPath1.insert(packedPath1.end(), packedPath2.begin(), packedPath2.end());
packed_path1.clear();
packed_path1.insert(
packed_path1.end(),
packed_path2.begin(),
packed_path2.end()
);
distance1 = distance2;
}
} else {
//packed paths 1 and 2 may need to switch.
if(*(packedPath1.end()-1) != *(temporaryPackedPath1.begin())) {
packedPath1.swap(packedPath2);
if(packed_path1.back() != temporary_packed_path1.front()) {
packed_path1.swap(packed_path2);
std::swap(distance1, distance2);
}
}
}
packedPath1.insert(packedPath1.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end());
packedPath2.insert(packedPath2.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end());
packed_path1.insert(
packed_path1.end(),
temporary_packed_path1.begin(),
temporary_packed_path1.end()
);
packed_path2.insert(
packed_path2.end(),
temporary_packed_path2.begin(),
temporary_packed_path2.end()
);
if( (packedPath1.back() == packedPath2.back()) && phantomNodePair.targetPhantom.isBidirected() ) {
NodeID lastNodeID = packedPath2.back();
searchFrom1stStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode+1);
searchFrom2ndStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode);
if(
(packed_path1.back() == packed_path2.back()) &&
phantom_node_pair.targetPhantom.isBidirected()
) {
NodeID last_node_id = packed_path2.back();
search_from_1st_node &= !(last_node_id == phantom_node_pair.targetPhantom.edgeBasedNode+1);
search_from_2nd_node &= !(last_node_id == phantom_node_pair.targetPhantom.edgeBasedNode);
}
distance1 += _localUpperbound1;
distance2 += _localUpperbound2;
distance1 += local_upper_bound1;
distance2 += local_upper_bound2;
}
if(distance1 > distance2){
std::swap(packedPath1, packedPath2);
if( distance1 > distance2 ){
std::swap( packed_path1, packed_path2 );
}
remove_consecutive_duplicates_from_vector(packedPath1);
super::UnpackPath(packedPath1, rawRouteData.computedShortestPath);
rawRouteData.lengthOfShortestPath = std::min(distance1, distance2);
remove_consecutive_duplicates_from_vector(packed_path1);
super::UnpackPath(packed_path1, raw_route_data.computedShortestPath);
raw_route_data.lengthOfShortestPath = std::min(distance1, distance2);
return;
}
};