improving fork handling on three-way turns

This commit is contained in:
Moritz Kobitzsch 2016-03-08 11:30:33 +01:00 committed by Patrick Niklaus
parent a5568f8be4
commit 94a2072533
2 changed files with 81 additions and 97 deletions

View File

@ -106,15 +106,13 @@ bool isMotorwayJunction(const NodeID from,
const util::NodeBasedDynamicGraph &node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
// Decide whether a turn is a turn or a ramp access // Decide whether a turn is a turn or a ramp access
TurnType findBasicTurnType(const NodeID from, TurnType findBasicTurnType(const EdgeID via_edge,
const EdgeID via_edge,
const TurnCandidate &candidate, const TurnCandidate &candidate,
const util::NodeBasedDynamicGraph &node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);
// Get the Instruction for an obvious turn // Get the Instruction for an obvious turn
// Instruction will be a silent instruction // Instruction will be a silent instruction
TurnInstruction getInstructionForObvious(const std::size_t number_of_candidates, TurnInstruction getInstructionForObvious(const std::size_t number_of_candidates,
const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
const TurnCandidate &candidate, const TurnCandidate &candidate,
const util::NodeBasedDynamicGraph &node_based_graph); const util::NodeBasedDynamicGraph &node_based_graph);

View File

@ -32,7 +32,7 @@ const unsigned constexpr INVALID_NAME_ID = 0;
using EdgeData = util::NodeBasedDynamicGraph::EdgeData; using EdgeData = util::NodeBasedDynamicGraph::EdgeData;
bool requiresAnnouncedment(const EdgeData &from, const EdgeData &to) bool requiresAnnouncement(const EdgeData &from, const EdgeData &to)
{ {
return !from.IsCompatibleTo(to); return !from.IsCompatibleTo(to);
} }
@ -76,8 +76,8 @@ std::vector<TurnCandidate> getTurns(const NodeID from,
for (const auto &candidate : turn_candidates) for (const auto &candidate : turn_candidates)
{ {
const auto &edge_data = node_based_graph.GetEdgeData(candidate.eid); const auto &edge_data = node_based_graph.GetEdgeData(candidate.eid);
//only check actual outgoing edges // only check actual outgoing edges
if( edge_data.reversed ) if (edge_data.reversed)
continue; continue;
if (edge_data.roundabout) if (edge_data.roundabout)
@ -438,7 +438,7 @@ std::vector<TurnCandidate> handleFromMotorway(const NodeID from,
BOOST_ASSERT(!isRampClass(turn_candidates[1].eid, node_based_graph)); BOOST_ASSERT(!isRampClass(turn_candidates[1].eid, node_based_graph));
turn_candidates[1].instruction = getInstructionForObvious( turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[1], node_based_graph);
} }
else else
{ {
@ -484,7 +484,7 @@ std::vector<TurnCandidate> handleFromMotorway(const NodeID from,
if (exiting_motorways == 2 && turn_candidates.size() == 2) if (exiting_motorways == 2 && turn_candidates.size() == 2)
{ {
turn_candidates[1].instruction = getInstructionForObvious( turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[1], node_based_graph);
util::SimpleLogger().Write(logWARNING) util::SimpleLogger().Write(logWARNING)
<< "Disabled U-Turn on a freeway at " << "Disabled U-Turn on a freeway at "
<< localizer(node_based_graph.GetTarget(via_edge)); << localizer(node_based_graph.GetTarget(via_edge));
@ -570,6 +570,7 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
std::vector<TurnCandidate> turn_candidates, std::vector<TurnCandidate> turn_candidates,
const util::NodeBasedDynamicGraph &node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
(void)from;
auto num_valid_turns = countValid(turn_candidates); auto num_valid_turns = countValid(turn_candidates);
// ramp straight into a motorway/ramp // ramp straight into a motorway/ramp
if (turn_candidates.size() == 2 && num_valid_turns == 1) if (turn_candidates.size() == 2 && num_valid_turns == 1)
@ -578,7 +579,7 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
BOOST_ASSERT(isMotorwayClass(turn_candidates[1].eid, node_based_graph)); BOOST_ASSERT(isMotorwayClass(turn_candidates[1].eid, node_based_graph));
turn_candidates[1].instruction = getInstructionForObvious( turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[1], node_based_graph);
} }
else if (turn_candidates.size() == 3) else if (turn_candidates.size() == 3)
{ {
@ -608,9 +609,8 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
TurnType::Merge, getTurnDirection(turn_candidates[1].angle)}; TurnType::Merge, getTurnDirection(turn_candidates[1].angle)};
} }
else // passing by the end of a motorway else // passing by the end of a motorway
turn_candidates[1].instruction = turn_candidates[1].instruction = getInstructionForObvious(
getInstructionForObvious(turn_candidates.size(), from, via_edge, turn_candidates.size(), via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1], node_based_graph);
} }
else else
{ {
@ -627,9 +627,8 @@ std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
TurnType::Merge, getTurnDirection(turn_candidates[2].angle)}; TurnType::Merge, getTurnDirection(turn_candidates[2].angle)};
} }
else // passing the end of a highway else // passing the end of a highway
turn_candidates[1].instruction = turn_candidates[1].instruction = getInstructionForObvious(
getInstructionForObvious(turn_candidates.size(), from, via_edge, turn_candidates.size(), via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1], node_based_graph);
} }
} }
else else
@ -776,22 +775,19 @@ bool isMotorwayJunction(const NodeID from,
in_data.road_classification.road_class == FunctionalRoadClass::TRUNK; in_data.road_classification.road_class == FunctionalRoadClass::TRUNK;
} }
TurnType findBasicTurnType(const NodeID from, TurnType findBasicTurnType(const EdgeID via_edge,
const EdgeID via_edge,
const TurnCandidate &candidate, const TurnCandidate &candidate,
const util::NodeBasedDynamicGraph &node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
(void)from; // FIXME unused
const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
const auto &out_data = node_based_graph.GetEdgeData(candidate.eid); const auto &out_data = node_based_graph.GetEdgeData(candidate.eid);
bool on_ramp = isRampClass(in_data.road_classification.road_class); bool on_ramp = isRampClass(in_data.road_classification.road_class);
(void)on_ramp; // FIXME unused
bool onto_ramp = isRampClass(out_data.road_classification.road_class); bool onto_ramp = isRampClass(out_data.road_classification.road_class);
if (!onto_ramp && onto_ramp) if (!on_ramp && onto_ramp)
return TurnType::Ramp; return TurnType::Ramp;
if (in_data.name_id == out_data.name_id && in_data.name_id != INVALID_NAME_ID) if (in_data.name_id == out_data.name_id && in_data.name_id != INVALID_NAME_ID)
@ -803,12 +799,11 @@ TurnType findBasicTurnType(const NodeID from,
} }
TurnInstruction getInstructionForObvious(const std::size_t num_candidates, TurnInstruction getInstructionForObvious(const std::size_t num_candidates,
const NodeID from,
const EdgeID via_edge, const EdgeID via_edge,
const TurnCandidate &candidate, const TurnCandidate &candidate,
const util::NodeBasedDynamicGraph &node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
const auto type = findBasicTurnType(from, via_edge, candidate, node_based_graph); const auto type = findBasicTurnType(via_edge, candidate, node_based_graph);
if (type == TurnType::Ramp) if (type == TurnType::Ramp)
{ {
return {TurnType::Ramp, getTurnDirection(candidate.angle)}; return {TurnType::Ramp, getTurnDirection(candidate.angle)};
@ -862,9 +857,9 @@ std::vector<TurnCandidate> handleTwoWayTurn(const NodeID from,
const util::NodeBasedDynamicGraph &node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
BOOST_ASSERT(turn_candidates[0].angle < 0.001); BOOST_ASSERT(turn_candidates[0].angle < 0.001);
(void)from;
turn_candidates[1].instruction = getInstructionForObvious( turn_candidates[1].instruction = getInstructionForObvious(turn_candidates.size(), via_edge,
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph); turn_candidates[1], node_based_graph);
if (turn_candidates[1].instruction.type == TurnType::Suppressed) if (turn_candidates[1].instruction.type == TurnType::Suppressed)
turn_candidates[1].instruction.type = TurnType::NoTurn; turn_candidates[1].instruction.type = TurnType::NoTurn;
@ -885,6 +880,7 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
const util::NodeBasedDynamicGraph &node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
BOOST_ASSERT(turn_candidates[0].angle < 0.001); BOOST_ASSERT(turn_candidates[0].angle < 0.001);
(void)from;
const auto isObviousOfTwo = [](const TurnCandidate turn, const TurnCandidate other) const auto isObviousOfTwo = [](const TurnCandidate turn, const TurnCandidate other)
{ {
return (angularDeviation(turn.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE && return (angularDeviation(turn.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
@ -905,59 +901,16 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
{ {
if (turn_candidates[1].valid && turn_candidates[2].valid) if (turn_candidates[1].valid && turn_candidates[2].valid)
{ {
if (TurnType::Ramp != assignFork(via_edge, turn_candidates[2], turn_candidates[1], node_based_graph);
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph))
{
if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) <
MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) >
FUZZY_ANGLE_DIFFERENCE)
{
turn_candidates[1].instruction =
getInstructionForObvious(turn_candidates.size(), from, via_edge,
turn_candidates[1], node_based_graph);
if (turn_candidates[1].instruction.type == TurnType::Turn)
turn_candidates[1].instruction = {TurnType::Fork,
DirectionModifier::SlightRight};
}
else
turn_candidates[1].instruction = {TurnType::Fork,
DirectionModifier::SlightRight};
}
else
turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::SlightRight};
if (TurnType::Ramp !=
findBasicTurnType(from, via_edge, turn_candidates[2], node_based_graph))
{
if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) <
MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) >
FUZZY_ANGLE_DIFFERENCE)
{
turn_candidates[2].instruction =
getInstructionForObvious(turn_candidates.size(), from, via_edge,
turn_candidates[2], node_based_graph);
if (turn_candidates[2].instruction.type == TurnType::Turn)
turn_candidates[2].instruction = {TurnType::Fork,
DirectionModifier::SlightRight};
}
else
turn_candidates[2].instruction = {TurnType::Fork,
DirectionModifier::SlightLeft};
}
else
turn_candidates[2].instruction = {TurnType::Ramp, DirectionModifier::SlightLeft};
} }
else else
{ {
if (turn_candidates[1].valid) if (turn_candidates[1].valid)
turn_candidates[1].instruction = getInstructionForObvious( turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[1], node_based_graph);
if (turn_candidates[2].valid) if (turn_candidates[2].valid)
turn_candidates[2].instruction = getInstructionForObvious( turn_candidates[2].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[2], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[2], node_based_graph);
} }
} }
/* T Intersection /* T Intersection
@ -974,16 +927,14 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
{ {
if (turn_candidates[1].valid) if (turn_candidates[1].valid)
{ {
if (TurnType::Ramp != if (TurnType::Ramp != findBasicTurnType(via_edge, turn_candidates[1], node_based_graph))
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph))
turn_candidates[1].instruction = {TurnType::EndOfRoad, DirectionModifier::Right}; turn_candidates[1].instruction = {TurnType::EndOfRoad, DirectionModifier::Right};
else else
turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::Right}; turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::Right};
} }
if (turn_candidates[2].valid) if (turn_candidates[2].valid)
{ {
if (TurnType::Ramp != if (TurnType::Ramp != findBasicTurnType(via_edge, turn_candidates[2], node_based_graph))
findBasicTurnType(from, via_edge, turn_candidates[2], node_based_graph))
turn_candidates[2].instruction = {TurnType::EndOfRoad, DirectionModifier::Left}; turn_candidates[2].instruction = {TurnType::EndOfRoad, DirectionModifier::Left};
else else
turn_candidates[2].instruction = {TurnType::Ramp, DirectionModifier::Left}; turn_candidates[2].instruction = {TurnType::Ramp, DirectionModifier::Left};
@ -1002,17 +953,16 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
{ {
if (turn_candidates[1].valid) if (turn_candidates[1].valid)
{ {
if (TurnType::Ramp != if (TurnType::Ramp != findBasicTurnType(via_edge, turn_candidates[1], node_based_graph))
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph))
turn_candidates[1].instruction = getInstructionForObvious( turn_candidates[1].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[1], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[1], node_based_graph);
else else
turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::Straight}; turn_candidates[1].instruction = {TurnType::Ramp, DirectionModifier::Straight};
} }
if (turn_candidates[2].valid) if (turn_candidates[2].valid)
{ {
turn_candidates[2].instruction = { turn_candidates[2].instruction = {
findBasicTurnType(from, via_edge, turn_candidates[2], node_based_graph), findBasicTurnType(via_edge, turn_candidates[2], node_based_graph),
DirectionModifier::Left}; DirectionModifier::Left};
} }
} }
@ -1030,10 +980,10 @@ std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
{ {
if (turn_candidates[2].valid) if (turn_candidates[2].valid)
turn_candidates[2].instruction = getInstructionForObvious( turn_candidates[2].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[2], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[2], node_based_graph);
if (turn_candidates[1].valid) if (turn_candidates[1].valid)
turn_candidates[1].instruction = { turn_candidates[1].instruction = {
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph), findBasicTurnType(via_edge, turn_candidates[1], node_based_graph),
DirectionModifier::Right}; DirectionModifier::Right};
} }
// merge onto a through street // merge onto a through street
@ -1141,6 +1091,7 @@ std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
std::vector<TurnCandidate> turn_candidates, std::vector<TurnCandidate> turn_candidates,
const util::NodeBasedDynamicGraph &node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
(void)from;
static int fallback_count = 0; static int fallback_count = 0;
// basic turn, or slightly rotated basic turn, has straight ANGLE // basic turn, or slightly rotated basic turn, has straight ANGLE
if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < FUZZY_ANGLE_DIFFERENCE && if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < FUZZY_ANGLE_DIFFERENCE &&
@ -1150,17 +1101,15 @@ std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
angularDeviation(turn_candidates[3].angle, turn_candidates[0].angle) > NARROW_TURN_ANGLE) angularDeviation(turn_candidates[3].angle, turn_candidates[0].angle) > NARROW_TURN_ANGLE)
{ {
{ // Right { // Right
const auto type = const auto type = findBasicTurnType(via_edge, turn_candidates[1], node_based_graph);
findBasicTurnType(from, via_edge, turn_candidates[1], node_based_graph);
turn_candidates[1].instruction = {type, DirectionModifier::Right}; turn_candidates[1].instruction = {type, DirectionModifier::Right};
} }
{ // Straight { // Straight
turn_candidates[2].instruction = getInstructionForObvious( turn_candidates[2].instruction = getInstructionForObvious(
turn_candidates.size(), from, via_edge, turn_candidates[2], node_based_graph); turn_candidates.size(), via_edge, turn_candidates[2], node_based_graph);
} }
{ // Left { // Left
const auto type = const auto type = findBasicTurnType(via_edge, turn_candidates[3], node_based_graph);
findBasicTurnType(from, via_edge, turn_candidates[3], node_based_graph);
turn_candidates[3].instruction = {type, DirectionModifier::Left}; turn_candidates[3].instruction = {type, DirectionModifier::Left};
} }
} }
@ -1172,8 +1121,7 @@ std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
{ {
for (std::size_t i = 1; i < turn_candidates.size(); ++i) for (std::size_t i = 1; i < turn_candidates.size(); ++i)
{ {
const auto type = const auto type = findBasicTurnType(via_edge, turn_candidates[i], node_based_graph);
findBasicTurnType(from, via_edge, turn_candidates[i], node_based_graph);
turn_candidates[i].instruction = {type, getTurnDirection(turn_candidates[i].angle)}; turn_candidates[i].instruction = {type, getTurnDirection(turn_candidates[i].angle)};
} }
} }
@ -2026,15 +1974,28 @@ void assignFork(const EdgeID via_edge,
const util::NodeBasedDynamicGraph &node_based_graph) const util::NodeBasedDynamicGraph &node_based_graph)
{ {
const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
const bool low_priority_left = isLowPriorityRoadClass(
node_based_graph.GetEdgeData(left.eid).road_classification.road_class);
const bool low_priority_right = isLowPriorityRoadClass(
node_based_graph.GetEdgeData(right.eid).road_classification.road_class);
{ // left fork { // left fork
const auto &out_data = node_based_graph.GetEdgeData(left.eid); const auto &out_data = node_based_graph.GetEdgeData(left.eid);
if (angularDeviation(left.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION && if ((angularDeviation(left.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(right.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE) angularDeviation(right.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE))
{ {
if (requiresAnnouncedment(in_data, out_data)) if (requiresAnnouncement(in_data, out_data))
{ {
if (low_priority_right && !low_priority_left)
left.instruction =
getInstructionForObvious(3, via_edge, left, node_based_graph);
else
{
if (low_priority_left && !low_priority_right)
left.instruction = {TurnType::Turn, DirectionModifier::SlightLeft};
else
left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft}; left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft};
} }
}
else else
{ {
left.instruction = {TurnType::Suppressed, DirectionModifier::Straight}; left.instruction = {TurnType::Suppressed, DirectionModifier::Straight};
@ -2042,18 +2003,35 @@ void assignFork(const EdgeID via_edge,
} }
else else
{ {
if (low_priority_right && !low_priority_left)
left.instruction = {TurnType::Suppressed, DirectionModifier::SlightLeft};
else
{
if (low_priority_left && !low_priority_right)
left.instruction = {TurnType::Turn, DirectionModifier::SlightLeft};
else
left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft}; left.instruction = {TurnType::Fork, DirectionModifier::SlightLeft};
} }
} }
}
{ // right fork { // right fork
const auto &out_data = node_based_graph.GetEdgeData(right.eid); const auto &out_data = node_based_graph.GetEdgeData(right.eid);
if (angularDeviation(right.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION && if (angularDeviation(right.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
angularDeviation(left.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE) angularDeviation(left.angle, STRAIGHT_ANGLE) > FUZZY_ANGLE_DIFFERENCE)
{ {
if (requiresAnnouncedment(in_data, out_data)) if (requiresAnnouncement(in_data, out_data))
{ {
if (low_priority_left && !low_priority_right)
right.instruction =
getInstructionForObvious(3, via_edge, right, node_based_graph);
else
{
if (low_priority_right && !low_priority_left)
right.instruction = {TurnType::Turn, DirectionModifier::SlightRight};
else
right.instruction = {TurnType::Fork, DirectionModifier::SlightRight}; right.instruction = {TurnType::Fork, DirectionModifier::SlightRight};
} }
}
else else
{ {
right.instruction = {TurnType::Suppressed, DirectionModifier::Straight}; right.instruction = {TurnType::Suppressed, DirectionModifier::Straight};
@ -2061,9 +2039,17 @@ void assignFork(const EdgeID via_edge,
} }
else else
{ {
if (low_priority_left && !low_priority_right)
right.instruction = {TurnType::Suppressed, DirectionModifier::SlightLeft};
else
{
if (low_priority_right && !low_priority_left)
right.instruction = {TurnType::Turn, DirectionModifier::SlightRight};
else
right.instruction = {TurnType::Fork, DirectionModifier::SlightRight}; right.instruction = {TurnType::Fork, DirectionModifier::SlightRight};
} }
} }
}
} }
void assignFork(const EdgeID via_edge, void assignFork(const EdgeID via_edge,
@ -2077,7 +2063,7 @@ void assignFork(const EdgeID via_edge,
{ {
const auto &in_data = node_based_graph.GetEdgeData(via_edge); const auto &in_data = node_based_graph.GetEdgeData(via_edge);
const auto &out_data = node_based_graph.GetEdgeData(center.eid); const auto &out_data = node_based_graph.GetEdgeData(center.eid);
if (requiresAnnouncedment(in_data, out_data)) if (requiresAnnouncement(in_data, out_data))
{ {
center.instruction = {TurnType::Fork, DirectionModifier::Straight}; center.instruction = {TurnType::Fork, DirectionModifier::Straight};
} }