Backporting refactoring from master branch
This commit is contained in:
parent
11d4d3ec30
commit
868d6ec776
@ -29,7 +29,7 @@ or see http://www.gnu.org/licenses/agpl.txt.
|
||||
#include "../DataStructures/Coordinate.h"
|
||||
|
||||
/*This class object computes the bitvector of indicating generalized input points
|
||||
* according to the (Ramer-)Douglas-Peucker algorithm. Runtime n\log n calls to fastDistance
|
||||
* according to the (Ramer-)Douglas-Peucker algorithm.
|
||||
*
|
||||
* Input is vector of pairs. Each pair consists of the point information and a bit
|
||||
* indicating if the points is present in the generalization.
|
||||
@ -37,7 +37,7 @@ or see http://www.gnu.org/licenses/agpl.txt.
|
||||
|
||||
//These thresholds are more or less heuristically chosen.
|
||||
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
||||
static double DouglasPeuckerThresholds[19] = { 32000000, 16240000, 80240000, 40240000, 20000000, 10000000, 500000, 240000, 120000, 60000, 30000, 19000, 5000, 2000, 200, 16, 6, 3, 3 };
|
||||
static double DouglasPeuckerThresholds[19] = { 32000000., 16240000., 80240000., 40240000., 20000000., 10000000., 500000., 240000., 120000., 60000., 30000., 19000., 5000., 2000., 200, 16, 6, 3. , 3. };
|
||||
|
||||
template<class PointT>
|
||||
class DouglasPeucker {
|
||||
@ -45,57 +45,6 @@ private:
|
||||
typedef std::pair<std::size_t, std::size_t> PairOfPoints;
|
||||
//Stack to simulate the recursion
|
||||
std::stack<PairOfPoints > recursionStack;
|
||||
public:
|
||||
void Run(std::vector<PointT> & inputVector, const unsigned zoomLevel) {
|
||||
const unsigned sizeOfInputVector = inputVector.size();
|
||||
{
|
||||
assert(zoomLevel < 19);
|
||||
assert(1 < inputVector.size());
|
||||
std::size_t leftBorderOfRange = 0;
|
||||
std::size_t rightBorderOfRange = 1;
|
||||
|
||||
//Sweep linerarily over array and identify those ranges that need to be checked
|
||||
//decision points have been previously marked
|
||||
do {
|
||||
assert(inputVector[leftBorderOfRange].necessary);
|
||||
assert(inputVector.back().necessary);
|
||||
|
||||
if(inputVector[rightBorderOfRange].necessary) {
|
||||
recursionStack.push(std::make_pair(leftBorderOfRange, rightBorderOfRange));
|
||||
leftBorderOfRange = rightBorderOfRange;
|
||||
}
|
||||
++rightBorderOfRange;
|
||||
} while( rightBorderOfRange < sizeOfInputVector);
|
||||
}
|
||||
while(!recursionStack.empty()) {
|
||||
//pop next element
|
||||
const PairOfPoints pair = recursionStack.top();
|
||||
recursionStack.pop();
|
||||
assert(inputVector[pair.first].necessary);
|
||||
assert(inputVector[pair.second].necessary);
|
||||
assert(pair.second < sizeOfInputVector);
|
||||
assert(pair.first < pair.second);
|
||||
int maxDistance = INT_MIN;
|
||||
std::size_t indexOfFarthestElement = pair.second;
|
||||
//find index idx of element with maxDistance
|
||||
for(std::size_t i = pair.first+1; i < pair.second; ++i){
|
||||
const int distance = fastDistance(inputVector[i].location, inputVector[pair.first].location, inputVector[pair.second].location);
|
||||
if(distance > DouglasPeuckerThresholds[zoomLevel] && distance > maxDistance) {
|
||||
indexOfFarthestElement = i;
|
||||
maxDistance = distance;
|
||||
}
|
||||
}
|
||||
if (maxDistance > DouglasPeuckerThresholds[zoomLevel]) {
|
||||
// mark idx as necessary
|
||||
inputVector[indexOfFarthestElement].necessary = true;
|
||||
if (1 < indexOfFarthestElement - pair.first) {
|
||||
recursionStack.push(std::make_pair(pair.first, indexOfFarthestElement) );
|
||||
}
|
||||
if (1 < pair.second - indexOfFarthestElement)
|
||||
recursionStack.push(std::make_pair(indexOfFarthestElement, pair.second) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This distance computation does integer arithmetic only and is about twice as fast as
|
||||
@ -124,6 +73,57 @@ public:
|
||||
return dist;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
void Run(std::vector<PointT> & inputVector, const unsigned zoomLevel) {
|
||||
{
|
||||
assert(zoomLevel < 19);
|
||||
assert(1 < inputVector.size());
|
||||
std::size_t leftBorderOfRange = 0;
|
||||
std::size_t rightBorderOfRange = 1;
|
||||
//Sweep linerarily over array and identify those ranges that need to be checked
|
||||
// recursionStack.hint(inputVector.size());
|
||||
do {
|
||||
assert(inputVector[leftBorderOfRange].necessary);
|
||||
assert(inputVector.back().necessary);
|
||||
|
||||
if(inputVector[rightBorderOfRange].necessary) {
|
||||
recursionStack.push(std::make_pair(leftBorderOfRange, rightBorderOfRange));
|
||||
leftBorderOfRange = rightBorderOfRange;
|
||||
}
|
||||
++rightBorderOfRange;
|
||||
} while( rightBorderOfRange < inputVector.size());
|
||||
}
|
||||
while(!recursionStack.empty()) {
|
||||
//pop next element
|
||||
const PairOfPoints pair = recursionStack.top();
|
||||
recursionStack.pop();
|
||||
assert(inputVector[pair.first].necessary);
|
||||
assert(inputVector[pair.second].necessary);
|
||||
assert(pair.second < inputVector.size());
|
||||
assert(pair.first < pair.second);
|
||||
int maxDistance = INT_MIN;
|
||||
|
||||
std::size_t indexOfFarthestElement = pair.second;
|
||||
//find index idx of element with maxDistance
|
||||
for(std::size_t i = pair.first+1; i < pair.second; ++i){
|
||||
const double distance = std::fabs(fastDistance(inputVector[i].location, inputVector[pair.first].location, inputVector[pair.second].location));
|
||||
if(distance > DouglasPeuckerThresholds[zoomLevel] && distance > maxDistance) {
|
||||
indexOfFarthestElement = i;
|
||||
maxDistance = distance;
|
||||
}
|
||||
}
|
||||
if (maxDistance > DouglasPeuckerThresholds[zoomLevel]) {
|
||||
// mark idx as necessary
|
||||
inputVector[indexOfFarthestElement].necessary = true;
|
||||
if (1 < indexOfFarthestElement - pair.first) {
|
||||
recursionStack.push(std::make_pair(pair.first, indexOfFarthestElement) );
|
||||
}
|
||||
if (1 < pair.second - indexOfFarthestElement)
|
||||
recursionStack.push(std::make_pair(indexOfFarthestElement, pair.second) );
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif /* DOUGLASPEUCKER_H_ */
|
||||
|
Loading…
Reference in New Issue
Block a user