Construct an adjacency list in order to discover turns.

This commit is contained in:
Daniel Patterson 2016-09-14 17:17:29 -07:00 committed by Moritz Kobitzsch
parent 0b7b16abc0
commit 805d93912d
3 changed files with 368 additions and 201 deletions

View File

@ -28,6 +28,7 @@ const constexpr std::uint32_t VARIANT_TYPE_SINT64 = 6;
const constexpr std::uint32_t VARIANT_TYPE_BOOL = 7;
const constexpr std::uint32_t VARIANT_TYPE_STRING = 1;
const constexpr std::uint32_t VARIANT_TYPE_DOUBLE = 3;
const constexpr std::uint32_t VARIANT_TYPE_FLOAT = 2;
// Vector tiles are 4096 virtual pixels on each side
const constexpr double EXTENT = 4096.0;

View File

@ -17,6 +17,8 @@
#include <algorithm>
#include <numeric>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
@ -31,8 +33,8 @@ namespace plugins
{
namespace detail
{
// TODO: Port all this encoding logic to https://github.com/mapbox/vector-tile, which wasn't available
// when this code was originally written.
// TODO: Port all this encoding logic to https://github.com/mapbox/vector-tile, which wasn't
// available when this code was originally written.
// Simple container class for WGS84 coordinates
template <typename T> struct Point final
@ -43,6 +45,7 @@ template <typename T> struct Point final
const T y;
};
// Simple container to hold a bounding box
struct BBox final
{
BBox(const double _minx, const double _miny, const double _maxx, const double _maxy)
@ -68,13 +71,20 @@ struct point_type_i final
const std::int64_t y;
};
// Used to accumulate all the information we want in the tile about
// a turn.
struct TurnData final
{
TurnData(std::size_t _in, std::size_t _out, std::size_t _weight)
: in_angle_offset(_in), turn_angle_offset(_out), weight_offset(_weight)
TurnData(const util::Coordinate coordinate_,
const std::size_t _in,
const std::size_t _out,
const std::size_t _weight)
: coordinate(coordinate_), in_angle_offset(_in), turn_angle_offset(_out),
weight_offset(_weight)
{
}
const util::Coordinate coordinate;
const std::size_t in_angle_offset;
const std::size_t turn_angle_offset;
const std::size_t weight_offset;
@ -86,6 +96,11 @@ using FloatPoint = detail::Point<double>;
using FixedLine = std::vector<FixedPoint>;
using FloatLine = std::vector<FloatPoint>;
constexpr const static int MIN_ZOOM_FOR_TURNS = 15;
// We use boost::geometry to clip lines/points that are outside or cross the boundary
// of the tile we're rendering. We need these types defined to use boosts clipping
// logic
typedef boost::geometry::model::point<double, 2, boost::geometry::cs::cartesian> point_t;
typedef boost::geometry::model::linestring<point_t> linestring_t;
typedef boost::geometry::model::box<point_t> box_t;
@ -147,6 +162,15 @@ inline bool encodePoint(const FixedPoint &pt, protozero::packed_field_uint32 &ge
return true;
}
/**
* Returnx the x1,y1,x2,y2 pixel coordinates of a line in a given
* tile.
*
* @param start the first coordinate of the line
* @param target the last coordinate of the line
* @param tile_bbox the boundaries of the tile, in mercator coordinates
* @return a FixedLine with coordinates relative to the tile_bbox.
*/
FixedLine coordinatesToTileLine(const util::Coordinate start,
const util::Coordinate target,
const detail::BBox &tile_bbox)
@ -197,6 +221,13 @@ FixedLine coordinatesToTileLine(const util::Coordinate start,
return tile_line;
}
/**
* Converts lon/lat into coordinates inside a Mercator projection tile (x/y pixel values)
*
* @param point the lon/lat you want the tile coords for
* @param tile_bbox the mercator boundaries of the tile
* @return a point (x,y) on the tile defined by tile_bbox
*/
FixedPoint coordinatesToTilePoint(const util::Coordinate point, const detail::BBox &tile_bbox)
{
const FloatPoint geo_point{static_cast<double>(util::toFloating(point.lon)),
@ -217,7 +248,8 @@ FixedPoint coordinatesToTilePoint(const util::Coordinate point, const detail::BB
}
/**
* Unpacks a single CH edge (NodeID->NodeID) down to the original edges, and returns a list of the edge data
* Unpacks a single CH edge (NodeID->NodeID) down to the original edges, and returns a list of the
* edge data
* @param from the node the CH edge starts at
* @param to the node the CH edge finishes at
* @param unpacked_path the sequence of EdgeData objects along the unpacked path
@ -228,15 +260,15 @@ void UnpackEdgeToEdges(const datafacade::BaseDataFacade &facade,
std::vector<datafacade::BaseDataFacade::EdgeData> &unpacked_path)
{
std::array<NodeID, 2> path{{from, to}};
UnpackCHEdge(
&facade,
path.begin(),
path.end(),
[&unpacked_path](const std::pair<NodeID, NodeID> & /* edge */, const datafacade::BaseDataFacade::EdgeData &data) {
unpacked_path.emplace_back(data);
});
}
UnpackCHEdge(&facade,
path.begin(),
path.end(),
[&unpacked_path](const std::pair<NodeID, NodeID> & /* edge */,
const datafacade::BaseDataFacade::EdgeData &data) {
unpacked_path.emplace_back(data);
});
}
} // ::detail namespace
Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::string &pbf_buffer)
{
@ -255,7 +287,12 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
// This hits the OSRM StaticRTree
const auto edges = facade.GetEdgesInBox(southwest, northeast);
// Vector tiles encode data values as lookup tables. This vector is the lookup table
// Vector tiles encode properties as references to a common lookup table.
// When we add a property to a "feature", we actually attach the index of the value
// rather than the value itself. Thus, we need to keep a list of the unique
// values we need, and we add this list to the tile as a lookup table. This
// vector holds all the actual used values, the feature refernce offsets in
// this vector.
// for integer values
std::vector<int> used_line_ints;
// While constructing the tile, we keep track of which integers we have in our table
@ -264,16 +301,24 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
// Same idea for street names - one lookup table for names for all features
std::vector<std::string> names;
// And an index of the names and their position in the list
std::unordered_map<std::string, std::size_t> name_offsets;
// And again for integer values used by points.
std::vector<int> used_point_ints;
std::unordered_map<int, std::size_t> point_int_offsets;
uint8_t max_datasource_id = 0;
std::vector<std::vector<detail::TurnData>> all_turn_data;
// And again for float values used by points
std::vector<float> used_point_floats;
std::unordered_map<float, std::size_t> point_float_offsets;
uint8_t max_datasource_id = 0;
// This is where we accumulate information on turns
std::vector<detail::TurnData> all_turn_data;
// Helper function for adding a new value to the line_ints lookup table. Returns
// the index of the value in the table, adding the value if it doesn't already
// exist
const auto use_line_value = [&used_line_ints, &line_int_offsets](const int &value) {
const auto found = line_int_offsets.find(value);
@ -286,7 +331,8 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
return;
};
const auto use_point_value = [&used_point_ints, &point_int_offsets](const int &value) {
// Same again
const auto use_point_int_value = [&used_point_ints, &point_int_offsets](const int &value) {
const auto found = point_int_offsets.find(value);
std::size_t offset;
@ -304,15 +350,253 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
return offset;
};
// Loop over all edges once to tally up all the attributes we'll need.
// We need to do this so that we know the attribute offsets to use
// when we encode each feature in the tile.
// And a third time, should probably template this....
const auto use_point_float_value = [&used_point_floats,
&point_float_offsets](const float &value) {
const auto found = point_float_offsets.find(value);
std::size_t offset;
if (found == point_float_offsets.end())
{
used_point_floats.push_back(value);
offset = used_point_floats.size() - 1;
point_float_offsets[value] = offset;
}
else
{
offset = found->second;
}
return offset;
};
// If we're zooming into 16 or higher, include turn data. Why? Because turns make the map
// really
// cramped, so we don't bother including the data for tiles that span a large area.
if (parameters.z >= detail::MIN_ZOOM_FOR_TURNS)
{
// Struct to hold info on all the EdgeBasedNodes that are visible in our tile
// When we create these, we insure that (source, target) and packed_geometry_id
// are all pointed in the same direction.
struct EdgeBasedNodeInfo
{
unsigned source_intersection; // node-based-node ID
unsigned target_intersection; // node-based-node ID
unsigned packed_geometry_id;
};
// Lookup table for edge-based-nodes
std::unordered_map<NodeID, EdgeBasedNodeInfo> edge_based_node_info;
std::unordered_map<NodeID, std::vector<EdgeID>> outgoing_edges;
std::unordered_map<NodeID, std::vector<EdgeID>> incoming_edges;
// Now, loop over all the road segments we saw, and build up a mini
// graph for just the network that's visible.
for (const auto &edge : edges)
{
// Note: edge.u is the node-based node ID of the source intersection
// edge.v is the node-based node ID of the target intersection
// both these values can be directly looked up for coordinates
// If forward travel is enabled on this road section, and we haven't seen this
// edge-based-node
// before
if (edge.forward_segment_id.enabled &&
edge_based_node_info.count(edge.forward_segment_id.id) == 0)
{
// Add this edge-based-nodeid as an outgoing from the source intersection
auto f = outgoing_edges.find(edge.u);
if (f != outgoing_edges.end())
{
f->second.push_back(edge.forward_segment_id.id);
}
else
{
outgoing_edges[edge.u] = {edge.forward_segment_id.id};
}
// Add this edge-based-nodeid as an incoming to the target intersection
f = incoming_edges.find(edge.v);
if (f != incoming_edges.end())
{
f->second.push_back(edge.forward_segment_id.id);
}
else
{
incoming_edges[edge.v] = {edge.forward_segment_id.id};
}
edge_based_node_info[edge.forward_segment_id.id] = {
edge.u, edge.v, edge.forward_packed_geometry_id};
}
// Same as previous block, but everything flipped
if (edge.reverse_segment_id.enabled &&
edge_based_node_info.count(edge.reverse_segment_id.id) == 0)
{
auto f = outgoing_edges.find(edge.v);
if (f != outgoing_edges.end())
{
f->second.push_back(edge.reverse_segment_id.id);
}
else
{
outgoing_edges[edge.v] = {edge.reverse_segment_id.id};
}
f = incoming_edges.find(edge.u);
if (f != incoming_edges.end())
{
f->second.push_back(edge.reverse_segment_id.id);
}
else
{
incoming_edges[edge.u] = {edge.reverse_segment_id.id};
}
// Save info about this edge-based-node, note reversal from forward
// block above.
edge_based_node_info[edge.reverse_segment_id.id] = {
edge.v, edge.u, edge.reverse_packed_geometry_id};
}
}
// Now, for every edge-based-node that we discovered (edge-based-nodes are sources
// and targets of turns). EBN is short for edge-based-node
for (const auto &source_ebn : edge_based_node_info)
{
// Grab a copy of the geometry leading up to the intersection.
std::vector<NodeID> first_geometry;
facade.GetUncompressedGeometry(source_ebn.second.packed_geometry_id, first_geometry);
// We earlier saved the source and target intersection nodes for every road section.
// We can use the target node to find all road sections that lead away from
// the intersection, and thus
// in the graph after our main
for (const auto &target_ebn : outgoing_edges[source_ebn.second.target_intersection])
{
// Ignore u-turns for now
if (edge_based_node_info.at(target_ebn).target_intersection ==
source_ebn.second.source_intersection)
continue;
// Find the connection between our source road and the target node
EdgeID smaller_edge_id = facade.FindSmallestEdge(
source_ebn.first, target_ebn, [](const contractor::QueryEdge::EdgeData &data) {
return data.forward;
});
// Depending on how the graph is constructed, we might have to look for
// a backwards edge instead. They're equivalent, just one is available for
// a forward routing search, and one is used for the backwards dijkstra
// steps. Their weight should be the same, we can use either one.
// If we didn't find a forward edge, try for a backward one
if (SPECIAL_EDGEID == smaller_edge_id)
{
smaller_edge_id = facade.FindSmallestEdge(
target_ebn, source_ebn.first, [](const contractor::QueryEdge::EdgeData &data) {
return data.backward;
});
}
// If no edge was found, it means that there's no connection between these nodes,
// due to oneways or turn restrictions. Given the edge-based-nodes that
// we're examining here, we *should* only find directly-connected edges, not
// shortcuts
if (smaller_edge_id != SPECIAL_EDGEID)
{
// Check to see if it was a shortcut edge we found. This can happen
// when exactly? Anyway, unpack it and get the first "real" edgedata
// out of it, which should represent the first hop, which is the one
// we want to find the turn.
auto data = facade.GetEdgeData(smaller_edge_id);
if (data.shortcut)
{
std::vector<contractor::QueryEdge::EdgeData> unpacked_shortcut;
detail::UnpackEdgeToEdges(facade, source_ebn.first, target_ebn, unpacked_shortcut);
data = unpacked_shortcut.front();
}
BOOST_ASSERT_MSG(!data.shortcut, "Connecting edge must not be a shortcut");
// This is the geometry leading away from the intersection
// (i.e. the geometry of the target edge-based-node)
std::vector<NodeID> second_geometry;
facade.GetUncompressedGeometry(
edge_based_node_info.at(target_ebn).packed_geometry_id, second_geometry);
// Now, calculate the sum of the weight of all the segments.
std::vector<EdgeWeight> forward_weight_vector;
facade.GetUncompressedWeights(source_ebn.second.packed_geometry_id,
forward_weight_vector);
const auto sum_node_weight = std::accumulate(
forward_weight_vector.begin(), forward_weight_vector.end(), 0);
// The edge.distance is the whole edge weight, which includes the turn cost.
// The turn cost is the edge.distance minus the sum of the individual road
// segment weights. This might not be 100% accurate, because some
// intersections include stop signs, traffic signals and other penalties,
// but at this stage, we can't divide those out, so we just treat the whole
// lot as the "turn cost" that we'll stick on the map.
const auto turn_cost = data.distance - sum_node_weight;
// Find the three nodes that make up the turn movement)
const auto node_from = first_geometry.size() > 1
? *(first_geometry.end() - 2)
: source_ebn.second.source_intersection;
const auto node_via = source_ebn.second.target_intersection;
const auto node_to = second_geometry.front();
const auto coord_from = facade.GetCoordinateOfNode(node_from);
const auto coord_via = facade.GetCoordinateOfNode(node_via);
const auto coord_to = facade.GetCoordinateOfNode(node_to);
// Calculate the bearing that we approach the intersection at
const auto angle_in = static_cast<int>(
util::coordinate_calculation::bearing(coord_from, coord_via));
// Add the angle to the values table for the vector tile, and get the index
// of that value in the table
const auto angle_in_index = use_point_int_value(angle_in);
// Calculate the bearing leading away from the intersection
const auto exit_bearing = static_cast<int>(
util::coordinate_calculation::bearing(coord_via, coord_to));
// Figure out the angle of the turn
auto turn_angle = exit_bearing - angle_in;
while (turn_angle > 180)
{
turn_angle -= 360;
}
while (turn_angle < -180)
{
turn_angle += 360;
}
// Add the turn angle value to the value lookup table for the vector tile.
const auto turn_angle_index = use_point_int_value(turn_angle);
// And, same for the actual turn cost value - it goes in the lookup table,
// not directly on the feature itself.
const auto turn_cost_index =
use_point_float_value(turn_cost / 10.0); // Note conversion to float here
// Save everything we need to later add all the points to the tile.
// We need the coordinate of the intersection, the angle in, the turn
// angle and the turn cost.
all_turn_data.emplace_back(detail::TurnData{
coord_via, angle_in_index, turn_angle_index, turn_cost_index});
}
}
}
}
// Vector tiles encode feature properties as indexes into a lookup table. So, we need to
// "pre-loop" over all the edges to create the lookup tables. Once we have those, we
// can then encode the features, and we'll know the indexes that feature properties
// need to refer to.
for (const auto &edge : edges)
{
int forward_weight = 0, reverse_weight = 0;
uint8_t forward_datasource = 0;
uint8_t reverse_datasource = 0;
std::vector<detail::TurnData> edge_turn_data;
// TODO this approach of writing at least an empty vector for any segment is probably stupid
// (inefficient)
@ -328,105 +612,6 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
forward_datasource = forward_datasource_vector[edge.fwd_segment_position];
use_line_value(forward_weight);
std::vector<NodeID> forward_node_vector;
facade.GetUncompressedGeometry(edge.forward_packed_geometry_id, forward_node_vector);
// If this is the last segment on an edge (i.e. leads to an intersection), find outgoing
// turns to write the turns point layer.
if (edge.fwd_segment_position == forward_node_vector.size() - 1)
{
const auto sum_node_weight =
std::accumulate(forward_weight_vector.begin(), forward_weight_vector.end(), 0);
// coord_a will be the OSM node immediately preceding the intersection, on the
// current edge
const auto coord_a = facade.GetCoordinateOfNode(
forward_node_vector.size() > 1
? forward_node_vector[forward_node_vector.size() - 2]
: edge.u);
// coord_b is the OSM intersection node, at the end of the current edge
const auto coord_b = facade.GetCoordinateOfNode(edge.v);
// There will often be multiple c_nodes. Here, we start by getting all outgoing
// shortcuts, which we can whittle down (and deduplicate) to just the edges
// immediately following intersections.
// NOTE: the approach of only using shortcuts means that we aren't
// getting or writing *every* turn here, but we don't especially care about turns
// that will never be returned in a route anyway.
std::unordered_map<NodeID, int> c_nodes;
for (const auto adj_shortcut :
facade.GetAdjacentEdgeRange(edge.forward_segment_id.id))
{
std::vector<contractor::QueryEdge::EdgeData> unpacked_shortcut;
// Outgoing shortcuts without `forward` travel enabled: do not want
if (!facade.GetEdgeData(adj_shortcut).forward)
{
continue;
}
detail::UnpackEdgeToEdges(facade,
edge.forward_segment_id.id,
facade.GetTarget(adj_shortcut),
unpacked_shortcut);
// Sometimes a "shortcut" is just an edge itself: this will not return a turn
if (unpacked_shortcut.size() < 2)
{
continue;
}
// Unpack the data from the second edge (the first edge will be the edge
// we're currently on), to use its geometry in calculating angle
const auto first_geometry_id =
facade.GetGeometryIndexForEdgeID(unpacked_shortcut[1].id);
std::vector<NodeID> first_geometry_vector;
facade.GetUncompressedGeometry(first_geometry_id, first_geometry_vector);
// EBE weight (the first edge in this shortcut) - EBN weight (calculated
// above by summing the distance of the current node-based edge) = turn weight
const auto sum_edge_weight = unpacked_shortcut[0].distance;
const auto turn_weight = sum_edge_weight - sum_node_weight;
c_nodes.emplace(first_geometry_vector.front(), turn_weight);
}
const auto angle_in =
static_cast<int>(util::coordinate_calculation::bearing(coord_a, coord_b));
// Only write for those that have angles out
if (c_nodes.size() > 0)
{
const auto angle_in_offset = use_point_value(angle_in);
for (const auto possible_next_node : c_nodes)
{
const auto coord_c = facade.GetCoordinateOfNode(possible_next_node.first);
const auto c_bearing = static_cast<int>(
util::coordinate_calculation::bearing(coord_b, coord_c));
auto turn_angle = c_bearing - angle_in;
while (turn_angle > 180)
{
turn_angle -= 360;
}
while (turn_angle < -180)
{
turn_angle += 360;
}
const auto turn_angle_offset = use_point_value(turn_angle);
const auto angle_weight_offset = use_point_value(possible_next_node.second);
// TODO this is not as efficient as it could be because of repeated
// angles_in
edge_turn_data.emplace_back(detail::TurnData{
angle_in_offset, turn_angle_offset, angle_weight_offset});
}
}
}
}
if (edge.reverse_packed_geometry_id != SPECIAL_EDGEID)
@ -439,13 +624,13 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
reverse_weight =
reverse_weight_vector[reverse_weight_vector.size() - edge.fwd_segment_position - 1];
use_line_value(reverse_weight);
std::vector<uint8_t> reverse_datasource_vector;
facade.GetUncompressedDatasources(edge.reverse_packed_geometry_id,
reverse_datasource_vector);
reverse_datasource = reverse_datasource_vector[reverse_datasource_vector.size() -
edge.fwd_segment_position - 1];
use_line_value(reverse_weight);
}
// Keep track of the highest datasource seen so that we don't write unnecessary
// data to the layer attribute values
@ -458,12 +643,8 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
names.push_back(name);
name_offsets[name] = names.size() - 1;
}
all_turn_data.emplace_back(std::move(edge_turn_data));
}
// TODO: extract speed values for compressed and uncompressed geometries
// Convert tile coordinates into mercator coordinates
util::web_mercator::xyzToMercator(
parameters.x, parameters.y, parameters.z, min_lon, min_lat, max_lon, max_lat);
@ -714,108 +895,90 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
}
}
// Only add the turn layer to the tile if it has some features (we sometimes won't
// for tiles of z<16, and tiles that don't show any intersections)
if (!all_turn_data.empty())
{
// Now write the points layer for turn penalty data:
// Add a layer object to the PBF stream. 3=='layer' from the vector tile spec (2.1)
protozero::pbf_writer point_layer_writer(tile_writer, util::vector_tile::LAYER_TAG);
// TODO: don't write a layer if there are no features
point_layer_writer.add_uint32(util::vector_tile::VERSION_TAG, 2); // version
// Field 1 is the "layer name" field, it's a string
point_layer_writer.add_string(util::vector_tile::NAME_TAG, "turns"); // name
// Field 5 is the tile extent. It's a uint32 and should be set to 4096
// for normal vector tiles.
point_layer_writer.add_uint32(util::vector_tile::EXTENT_TAG,
util::vector_tile::EXTENT); // extent
// Begin the layer features block
// Begin writing the set of point features
{
// Each feature gets a unique id, starting at 1
unsigned id = 1;
for (uint64_t i = 0; i < edges.size(); i++)
// Start each features with an ID starting at 1
int id = 1;
// Helper function to encode a new point feature on a vector tile.
const auto encode_tile_point = [&point_layer_writer, &used_point_ints, &id](
const detail::FixedPoint &tile_point, const detail::TurnData &point_turn_data) {
protozero::pbf_writer feature_writer(point_layer_writer,
util::vector_tile::FEATURE_TAG);
// Field 3 is the "geometry type" field. Value 1 is "point"
feature_writer.add_enum(
util::vector_tile::GEOMETRY_TAG,
util::vector_tile::GEOMETRY_TYPE_POINT); // geometry type
feature_writer.add_uint64(util::vector_tile::ID_TAG, id++); // id
{
// Write out the 3 properties we want on the feature. These
// refer to indexes in the properties lookup table, which we
// add to the tile after we add all features.
protozero::packed_field_uint32 field(
feature_writer, util::vector_tile::FEATURE_ATTRIBUTES_TAG);
field.add_element(0); // "bearing_in" tag key offset
field.add_element(point_turn_data.in_angle_offset);
field.add_element(1); // "turn_angle" tag key offset
field.add_element(point_turn_data.turn_angle_offset);
field.add_element(2); // "cost" tag key offset
field.add_element(used_point_ints.size() + point_turn_data.weight_offset);
}
{
// Add the geometry as the last field in this feature
protozero::packed_field_uint32 geometry(
feature_writer, util::vector_tile::FEATURE_GEOMETRIES_TAG);
encodePoint(tile_point, geometry);
}
};
// Loop over all the turns we found and add them as features to the layer
for (const auto &turndata : all_turn_data)
{
const auto &edge = edges[i];
const auto &edge_turn_data = all_turn_data[i];
// Skip writing for edges with no turn penalty data
if (edge_turn_data.empty())
{
continue;
}
std::vector<NodeID> forward_node_vector;
facade.GetUncompressedGeometry(edge.forward_packed_geometry_id,
forward_node_vector);
// Skip writing for non-intersection segments
if (edge.fwd_segment_position != forward_node_vector.size() - 1)
{
continue;
}
const auto encode_tile_point =
[&point_layer_writer, &edge, &id](const detail::FixedPoint &tile_point,
const detail::TurnData &point_turn_data) {
protozero::pbf_writer feature_writer(point_layer_writer,
util::vector_tile::FEATURE_TAG);
// Field 3 is the "geometry type" field. Value 1 is "point"
feature_writer.add_enum(
util::vector_tile::GEOMETRY_TAG,
util::vector_tile::GEOMETRY_TYPE_POINT); // geometry type
// Field 1 for the feature is the "id" field.
feature_writer.add_uint64(util::vector_tile::ID_TAG, id++); // id
{
// See above for explanation
protozero::packed_field_uint32 field(
feature_writer, util::vector_tile::FEATURE_ATTRIBUTES_TAG);
field.add_element(0); // "bearing_in" tag key offset
field.add_element(point_turn_data.in_angle_offset);
field.add_element(1); // "turn_angle" tag key offset
field.add_element(point_turn_data.turn_angle_offset);
field.add_element(2); // "weight" tag key offset
field.add_element(point_turn_data.weight_offset);
}
{
protozero::packed_field_uint32 geometry(
feature_writer, util::vector_tile::FEATURE_GEOMETRIES_TAG);
encodePoint(tile_point, geometry);
}
};
const auto turn_coordinate = facade.GetCoordinateOfNode(edge.v);
const auto tile_point = coordinatesToTilePoint(turn_coordinate, tile_bbox);
const auto tile_point = coordinatesToTilePoint(turndata.coordinate, tile_bbox);
if (!boost::geometry::within(detail::point_t(tile_point.x, tile_point.y),
detail::clip_box))
{
continue;
}
for (const auto &individual_turn : edge_turn_data)
{
encode_tile_point(tile_point, individual_turn);
}
encode_tile_point(tile_point, turndata);
}
}
// Field id 3 is the "keys" attribute
// We need two "key" fields, these are referred to with 0 and 1 (their array indexes)
// earlier
// Add the names of the three attributes we added to all the turn penalty
// features previously. The indexes used there refer to these keys.
point_layer_writer.add_string(util::vector_tile::KEY_TAG, "bearing_in");
point_layer_writer.add_string(util::vector_tile::KEY_TAG, "turn_angle");
point_layer_writer.add_string(util::vector_tile::KEY_TAG, "weight");
point_layer_writer.add_string(util::vector_tile::KEY_TAG, "cost");
// Now, we write out the possible integer values.
// Now, save the lists of integers and floats that our features refer to.
for (const auto &value : used_point_ints)
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(point_layer_writer,
util::vector_tile::VARIANT_TAG);
// Attribute value 6 == sint64 type
values_writer.add_sint64(util::vector_tile::VARIANT_TYPE_SINT64, value);
}
for (const auto &value : used_point_floats)
{
protozero::pbf_writer values_writer(point_layer_writer,
util::vector_tile::VARIANT_TAG);
values_writer.add_float(util::vector_tile::VARIANT_TYPE_FLOAT, value);
}
}
}
// protozero serializes data during object destructors, so once the scope closes,
// our result buffer will have all the tile data encoded into it.
return Status::Ok;
}

View File

@ -88,6 +88,9 @@ BOOST_AUTO_TEST_CASE(test_tile)
case util::vector_tile::VARIANT_TYPE_DOUBLE:
value.get_double();
break;
case util::vector_tile::VARIANT_TYPE_FLOAT:
value.get_float();
break;
case util::vector_tile::VARIANT_TYPE_STRING:
value.get_string();
break;
@ -160,9 +163,9 @@ BOOST_AUTO_TEST_CASE(test_tile)
auto iter = value_begin;
BOOST_CHECK_EQUAL(*iter++, 0); // bearing_in key
*iter++;
BOOST_CHECK_EQUAL(*iter++, 1); // bearing_out key
BOOST_CHECK_EQUAL(*iter++, 1); // turn_angle key
*iter++;
BOOST_CHECK_EQUAL(*iter++, 2); // weight key
BOOST_CHECK_EQUAL(*iter++, 2); // cost key
*iter++; // skip value check, can be valud uint32
BOOST_CHECK(iter == value_end);
// geometry