Merge branch 'master' into sf-unpacked-path-struct
This commit is contained in:
commit
6c7da606e6
@ -25,6 +25,7 @@
|
||||
- CHANGED: Use node-api instead of NAN. [#6452](https://github.com/Project-OSRM/osrm-backend/pull/6452)
|
||||
- Misc:
|
||||
- CHANGED: Use struct instead of tuple to define UnpackedPath. [#6974](https://github.com/Project-OSRM/osrm-backend/pull/6974)
|
||||
- CHANGED: Micro performance optimisation in map matching. [#6976](https://github.com/Project-OSRM/osrm-backend/pull/6976)
|
||||
- CHANGED: Re-use priority queue in StaticRTree. [#6952](https://github.com/Project-OSRM/osrm-backend/pull/6952)
|
||||
- CHANGED: Optimise encodePolyline function. [#6940](https://github.com/Project-OSRM/osrm-backend/pull/6940)
|
||||
- CHANGED: Avoid reallocations in base64 encoding. [#6951](https://github.com/Project-OSRM/osrm-backend/pull/6951)
|
||||
|
@ -86,9 +86,9 @@ def bootstrap_confidence_interval(data, num_samples=1000, confidence_level=0.95)
|
||||
mean = np.mean(means)
|
||||
return mean, lower_bound, upper_bound
|
||||
|
||||
def calculate_confidence_interval(data):
|
||||
def calculate_confidence_interval(data, min_is_best=True):
|
||||
mean, lower, upper = bootstrap_confidence_interval(data)
|
||||
min_value = np.min(data)
|
||||
min_value = np.min(data) if min_is_best else np.max(data)
|
||||
return mean, (upper - lower) / 2, min_value
|
||||
|
||||
|
||||
@ -117,7 +117,7 @@ def main():
|
||||
|
||||
|
||||
total_time, total_ci, total_best = calculate_confidence_interval(np.sum(all_times, axis=1))
|
||||
ops_per_sec, ops_per_sec_ci, ops_per_sec_best = calculate_confidence_interval(float(all_times.shape[1]) / np.sum(all_times / 1000, axis=1))
|
||||
ops_per_sec, ops_per_sec_ci, ops_per_sec_best = calculate_confidence_interval(float(all_times.shape[1]) / np.sum(all_times / 1000, axis=1), min_is_best=False)
|
||||
min_time, min_ci, _ = calculate_confidence_interval(np.min(all_times, axis=1))
|
||||
mean_time, mean_ci, _ = calculate_confidence_interval(np.mean(all_times, axis=1))
|
||||
median_time, median_ci, _ = calculate_confidence_interval(np.median(all_times, axis=1))
|
||||
|
@ -134,6 +134,7 @@ struct ConfidenceInterval
|
||||
double mean;
|
||||
double confidence;
|
||||
double min;
|
||||
double max;
|
||||
};
|
||||
|
||||
// Helper function to calculate the bootstrap confidence interval
|
||||
@ -161,8 +162,10 @@ ConfidenceInterval confidenceInterval(const std::vector<double> &data,
|
||||
double upper_bound = means[(int)((1 + confidence_level) / 2 * num_samples)];
|
||||
double mean = std::accumulate(means.begin(), means.end(), 0.0) / means.size();
|
||||
|
||||
ConfidenceInterval ci = {
|
||||
mean, (upper_bound - lower_bound) / 2, *std::min_element(data.begin(), data.end())};
|
||||
ConfidenceInterval ci = {mean,
|
||||
(upper_bound - lower_bound) / 2,
|
||||
*std::min_element(data.begin(), data.end()),
|
||||
*std::max_element(data.begin(), data.end())};
|
||||
return ci;
|
||||
}
|
||||
|
||||
@ -260,7 +263,7 @@ std::ostream &operator<<(std::ostream &os, Statistics &statistics)
|
||||
ConfidenceInterval ops_ci = statistics.ops_per_sec();
|
||||
|
||||
os << "ops: " << ops_ci.mean << " ± " << ops_ci.confidence << " ops/s. "
|
||||
<< "best: " << ops_ci.min << "ops/s." << std::endl;
|
||||
<< "best: " << ops_ci.max << "ops/s." << std::endl;
|
||||
os << "total: " << total_ci.mean << " ± " << total_ci.confidence << "ms. "
|
||||
<< "best: " << total_ci.min << "ms." << std::endl;
|
||||
os << "avg: " << mean_ci.mean << " ± " << mean_ci.confidence << "ms" << std::endl;
|
||||
|
@ -401,6 +401,7 @@ SubMatchingList mapMatching(SearchEngineData<Algorithm> &engine_working_data,
|
||||
auto trace_distance = 0.0;
|
||||
matching.nodes.reserve(reconstructed_indices.size());
|
||||
matching.indices.reserve(reconstructed_indices.size());
|
||||
matching.alternatives_count.reserve(reconstructed_indices.size());
|
||||
for (const auto &idx : reconstructed_indices)
|
||||
{
|
||||
const auto timestamp_index = idx.first;
|
||||
@ -428,7 +429,7 @@ SubMatchingList mapMatching(SearchEngineData<Algorithm> &engine_working_data,
|
||||
|
||||
matching.confidence = confidence(trace_distance, matching_distance);
|
||||
|
||||
sub_matchings.push_back(matching);
|
||||
sub_matchings.emplace_back(std::move(matching));
|
||||
sub_matching_begin = sub_matching_end;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user