Revert "Improve speed of Map Matching" (#5196)

* Revert "Update changelog"

This reverts commit 9b779c704f.

* Revert "Fix formating"

This reverts commit 5bd7d04fe3.

* Revert "Fix bug in computation of distance offset for phantom node"

This reverts commit 0f78f7b2cc.

* Revert "Adjust text cases for flightly different matching due to rounding"

This reverts commit 8473be69d2.

* Revert "Round network distance to deci-meter to retain previous behavior"

This reverts commit c0124f7d77.

* Revert "Preserve heap state in map matching"

This reverts commit b630b4e32a.

* Revert "Use distance functions from many to many"

This reverts commit 89fabc1b9c.

* Revert "Use FCC algorithm for map matching distance calculation"

This reverts commit a649a8a5cf.
This commit is contained in:
Kajari Ghosh 2018-09-06 12:05:28 -04:00 committed by GitHub
parent 5476f6ab27
commit 5597415f28
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 214 additions and 289 deletions

View File

@ -6,8 +6,6 @@
- ADDED: Node bindings can return pre-rendered JSON buffer. [#5189](https://github.com/Project-OSRM/osrm-backend/pull/5189) - ADDED: Node bindings can return pre-rendered JSON buffer. [#5189](https://github.com/Project-OSRM/osrm-backend/pull/5189)
- Bugfixes: - Bugfixes:
- FIXED: collapsing of ExitRoundabout instructions [#5114](https://github.com/Project-OSRM/osrm-backend/issues/5114) - FIXED: collapsing of ExitRoundabout instructions [#5114](https://github.com/Project-OSRM/osrm-backend/issues/5114)
- FIXED: fix osrm-routed gdb not work issue [#5156](https://github.com/Project-OSRM/osrm-backend/issues/5156)
- FIXED: negative distances in table plugin annotation [#5106](https://github.com/Project-OSRM/osrm-backend/issues/5106)
- Misc: - Misc:
- CHANGED: Support up to 512 named shared memory regions [#5185](https://github.com/Project-OSRM/osrm-backend/pull/5185) - CHANGED: Support up to 512 named shared memory regions [#5185](https://github.com/Project-OSRM/osrm-backend/pull/5185)

View File

@ -449,7 +449,6 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
const auto reverse_durations = datafacade.GetUncompressedReverseDurations(geometry_id); const auto reverse_durations = datafacade.GetUncompressedReverseDurations(geometry_id);
const auto forward_geometry = datafacade.GetUncompressedForwardGeometry(geometry_id); const auto forward_geometry = datafacade.GetUncompressedForwardGeometry(geometry_id);
const auto reverse_geometry = datafacade.GetUncompressedReverseGeometry(geometry_id);
const auto forward_weight_offset = const auto forward_weight_offset =
std::accumulate(forward_weights.begin(), std::accumulate(forward_weights.begin(),
@ -480,19 +479,19 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
datafacade.GetCoordinateOfNode(forward_geometry(data.fwd_segment_position)), datafacade.GetCoordinateOfNode(forward_geometry(data.fwd_segment_position)),
point_on_segment); point_on_segment);
const auto rev_segment_position = reverse_weights.size() - data.fwd_segment_position - 1; const auto reverse_weight_offset =
std::accumulate(reverse_weights.begin(),
const auto reverse_weight_offset = std::accumulate( reverse_weights.end() - data.fwd_segment_position - 1,
reverse_weights.begin(), reverse_weights.begin() + rev_segment_position, EdgeWeight{0}); EdgeWeight{0});
const auto reverse_duration_offset = const auto reverse_duration_offset =
std::accumulate(reverse_durations.begin(), std::accumulate(reverse_durations.begin(),
reverse_durations.begin() + rev_segment_position, reverse_durations.end() - data.fwd_segment_position - 1,
EdgeDuration{0}); EdgeDuration{0});
EdgeDistance reverse_distance_offset = 0; EdgeDistance reverse_distance_offset = 0;
for (auto current = reverse_geometry.begin(); for (auto current = forward_geometry.begin();
current < reverse_geometry.begin() + rev_segment_position; current < forward_geometry.end() - data.fwd_segment_position - 2;
++current) ++current)
{ {
reverse_distance_offset += util::coordinate_calculation::fccApproximateDistance( reverse_distance_offset += util::coordinate_calculation::fccApproximateDistance(
@ -500,11 +499,13 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
datafacade.GetCoordinateOfNode(*std::next(current))); datafacade.GetCoordinateOfNode(*std::next(current)));
} }
EdgeWeight reverse_weight = reverse_weights[rev_segment_position]; EdgeWeight reverse_weight =
EdgeDuration reverse_duration = reverse_durations[rev_segment_position]; reverse_weights[reverse_weights.size() - data.fwd_segment_position - 1];
EdgeDuration reverse_duration =
reverse_durations[reverse_durations.size() - data.fwd_segment_position - 1];
EdgeDistance reverse_distance = util::coordinate_calculation::fccApproximateDistance( EdgeDistance reverse_distance = util::coordinate_calculation::fccApproximateDistance(
point_on_segment, point_on_segment,
datafacade.GetCoordinateOfNode(reverse_geometry(rev_segment_position))); datafacade.GetCoordinateOfNode(forward_geometry(data.fwd_segment_position + 1)));
ratio = std::min(1.0, std::max(0.0, ratio)); ratio = std::min(1.0, std::max(0.0, ratio));
if (data.forward_segment_id.id != SPECIAL_SEGMENTID) if (data.forward_segment_id.id != SPECIAL_SEGMENTID)
@ -692,7 +693,7 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
const CoordinateList &coordinates; const CoordinateList &coordinates;
DataFacadeT &datafacade; DataFacadeT &datafacade;
}; };
} // namespace engine }
} // namespace osrm }
#endif #endif

View File

@ -44,19 +44,50 @@ bool needsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &ta
bool needsLoopForward(const PhantomNodes &phantoms); bool needsLoopForward(const PhantomNodes &phantoms);
bool needsLoopBackwards(const PhantomNodes &phantoms); bool needsLoopBackwards(const PhantomNodes &phantoms);
namespace detail template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomNodes &nodes)
{ {
template <typename Algorithm> const auto &source = nodes.source_phantom;
void insertSourceInHeap(typename SearchEngineData<Algorithm>::ManyToManyQueryHeap &heap, if (source.IsValidForwardSource())
const PhantomNode &phantom_node) {
forward_heap.Insert(source.forward_segment_id.id,
-source.GetForwardWeightPlusOffset(),
source.forward_segment_id.id);
}
if (source.IsValidReverseSource())
{
forward_heap.Insert(source.reverse_segment_id.id,
-source.GetReverseWeightPlusOffset(),
source.reverse_segment_id.id);
}
const auto &target = nodes.target_phantom;
if (target.IsValidForwardTarget())
{
reverse_heap.Insert(target.forward_segment_id.id,
target.GetForwardWeightPlusOffset(),
target.forward_segment_id.id);
}
if (target.IsValidReverseTarget())
{
reverse_heap.Insert(target.reverse_segment_id.id,
target.GetReverseWeightPlusOffset(),
target.reverse_segment_id.id);
}
}
template <typename ManyToManyQueryHeap>
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
{ {
if (phantom_node.IsValidForwardTarget()) if (phantom_node.IsValidForwardSource())
{ {
heap.Insert(phantom_node.forward_segment_id.id, heap.Insert(phantom_node.forward_segment_id.id,
-phantom_node.GetForwardWeightPlusOffset(), -phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id, -phantom_node.GetForwardDuration()}); {phantom_node.forward_segment_id.id, -phantom_node.GetForwardDuration()});
} }
if (phantom_node.IsValidReverseTarget()) if (phantom_node.IsValidReverseSource())
{ {
heap.Insert(phantom_node.reverse_segment_id.id, heap.Insert(phantom_node.reverse_segment_id.id,
-phantom_node.GetReverseWeightPlusOffset(), -phantom_node.GetReverseWeightPlusOffset(),
@ -64,9 +95,8 @@ void insertSourceInHeap(typename SearchEngineData<Algorithm>::ManyToManyQueryHea
} }
} }
template <typename Algorithm> template <typename ManyToManyQueryHeap>
void insertTargetInHeap(typename SearchEngineData<Algorithm>::ManyToManyQueryHeap &heap, void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
const PhantomNode &phantom_node)
{ {
if (phantom_node.IsValidForwardTarget()) if (phantom_node.IsValidForwardTarget())
{ {
@ -82,109 +112,6 @@ void insertTargetInHeap(typename SearchEngineData<Algorithm>::ManyToManyQueryHea
} }
} }
template <typename Algorithm>
void insertSourceInHeap(typename SearchEngineData<Algorithm>::QueryHeap &heap,
const PhantomNode &phantom_node)
{
if (phantom_node.IsValidForwardSource())
{
heap.Insert(phantom_node.forward_segment_id.id,
-phantom_node.GetForwardWeightPlusOffset(),
phantom_node.forward_segment_id.id);
}
if (phantom_node.IsValidReverseSource())
{
heap.Insert(phantom_node.reverse_segment_id.id,
-phantom_node.GetReverseWeightPlusOffset(),
phantom_node.reverse_segment_id.id);
}
}
template <typename Algorithm>
void insertTargetInHeap(typename SearchEngineData<Algorithm>::QueryHeap &heap,
const PhantomNode &phantom_node)
{
if (phantom_node.IsValidForwardTarget())
{
heap.Insert(phantom_node.forward_segment_id.id,
phantom_node.GetForwardWeightPlusOffset(),
phantom_node.forward_segment_id.id);
}
if (phantom_node.IsValidReverseTarget())
{
heap.Insert(phantom_node.reverse_segment_id.id,
phantom_node.GetReverseWeightPlusOffset(),
phantom_node.reverse_segment_id.id);
}
}
} // namespace detail
inline void insertTargetInHeap(typename SearchEngineData<mld::Algorithm>::ManyToManyQueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertTargetInHeap<mld::Algorithm>(heap, phantom_node);
}
inline void insertTargetInHeap(typename SearchEngineData<ch::Algorithm>::ManyToManyQueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertTargetInHeap<ch::Algorithm>(heap, phantom_node);
}
inline void insertTargetInHeap(typename SearchEngineData<mld::Algorithm>::QueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertTargetInHeap<mld::Algorithm>(heap, phantom_node);
}
inline void insertTargetInHeap(typename SearchEngineData<ch::Algorithm>::QueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertTargetInHeap<ch::Algorithm>(heap, phantom_node);
}
inline void insertSourceInHeap(typename SearchEngineData<mld::Algorithm>::ManyToManyQueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertSourceInHeap<mld::Algorithm>(heap, phantom_node);
}
inline void insertSourceInHeap(typename SearchEngineData<ch::Algorithm>::ManyToManyQueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertSourceInHeap<ch::Algorithm>(heap, phantom_node);
}
inline void insertSourceInHeap(typename SearchEngineData<mld::Algorithm>::QueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertSourceInHeap<mld::Algorithm>(heap, phantom_node);
}
inline void insertSourceInHeap(typename SearchEngineData<ch::Algorithm>::QueryHeap &heap,
const PhantomNode &phantom_node)
{
detail::insertSourceInHeap<ch::Algorithm>(heap, phantom_node);
}
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomNodes &nodes)
{
insertSourceInHeap(forward_heap, nodes.source_phantom);
insertTargetInHeap(reverse_heap, nodes.target_phantom);
}
template <typename Algorithm>
void insertSourceInHeap(typename SearchEngineData<Algorithm>::ManyToManyQueryHeap &heap,
const PhantomNode &phantom_node)
{
if (phantom_node.IsValidForwardSource())
{
heap.Insert(phantom_node.forward_segment_id.id,
-phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id, -phantom_node.GetForwardDuration()});
}
if (phantom_node.IsValidReverseSource())
{
heap.Insert(phantom_node.reverse_segment_id.id,
-phantom_node.GetReverseWeightPlusOffset(),
{phantom_node.reverse_segment_id.id, -phantom_node.GetReverseDuration()});
}
}
template <typename FacadeT> template <typename FacadeT>
void annotatePath(const FacadeT &facade, void annotatePath(const FacadeT &facade,
const PhantomNodes &phantom_node_pair, const PhantomNodes &phantom_node_pair,
@ -394,10 +321,58 @@ void annotatePath(const FacadeT &facade,
} }
} }
EdgeDistance adjustPathDistanceToPhantomNodes(const std::vector<NodeID> &path, template <typename Algorithm>
const PhantomNode &source_phantom, double getPathDistance(const DataFacade<Algorithm> &facade,
const PhantomNode &target_phantom, const std::vector<PathData> unpacked_path,
const EdgeDistance distance); const PhantomNode &source_phantom,
const PhantomNode &target_phantom)
{
using util::coordinate_calculation::detail::DEGREE_TO_RAD;
using util::coordinate_calculation::detail::EARTH_RADIUS;
double distance = 0;
double prev_lat =
static_cast<double>(util::toFloating(source_phantom.location.lat)) * DEGREE_TO_RAD;
double prev_lon =
static_cast<double>(util::toFloating(source_phantom.location.lon)) * DEGREE_TO_RAD;
double prev_cos = std::cos(prev_lat);
for (const auto &p : unpacked_path)
{
const auto current_coordinate = facade.GetCoordinateOfNode(p.turn_via_node);
const double current_lat =
static_cast<double>(util::toFloating(current_coordinate.lat)) * DEGREE_TO_RAD;
const double current_lon =
static_cast<double>(util::toFloating(current_coordinate.lon)) * DEGREE_TO_RAD;
const double current_cos = std::cos(current_lat);
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
distance += EARTH_RADIUS * charv;
prev_lat = current_lat;
prev_lon = current_lon;
prev_cos = current_cos;
}
const double current_lat =
static_cast<double>(util::toFloating(target_phantom.location.lat)) * DEGREE_TO_RAD;
const double current_lon =
static_cast<double>(util::toFloating(target_phantom.location.lon)) * DEGREE_TO_RAD;
const double current_cos = std::cos(current_lat);
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
distance += EARTH_RADIUS * charv;
return distance;
}
template <typename AlgorithmT> template <typename AlgorithmT>
InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade, InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,

View File

@ -97,6 +97,7 @@ inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
const std::vector<std::size_t> &phantom_indices) const std::vector<std::size_t> &phantom_indices)
{ {
auto min_level = [&partition, node](const PhantomNode &phantom_node) { auto min_level = [&partition, node](const PhantomNode &phantom_node) {
const auto &forward_segment = phantom_node.forward_segment_id; const auto &forward_segment = phantom_node.forward_segment_id;
const auto forward_level = const auto forward_level =
forward_segment.enabled ? partition.GetHighestDifferentLevel(node, forward_segment.id) forward_segment.enabled ? partition.GetHighestDifferentLevel(node, forward_segment.id)
@ -119,7 +120,7 @@ inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
} }
return result; return result;
} }
} // namespace }
// Heaps only record for each node its predecessor ("parent") on the shortest path. // Heaps only record for each node its predecessor ("parent") on the shortest path.
// For re-constructing the actual path we need to trace back all parent "pointers". // For re-constructing the actual path we need to trace back all parent "pointers".
@ -390,27 +391,21 @@ UnpackedPath search(SearchEngineData<Algorithm> &engine_working_data,
EdgeWeight weight_upper_bound, EdgeWeight weight_upper_bound,
Args... args) Args... args)
{ {
if (forward_heap.Empty() && reverse_heap.Empty()) if (forward_heap.Empty() || reverse_heap.Empty())
{ {
return std::make_tuple(INVALID_EDGE_WEIGHT, std::vector<NodeID>(), std::vector<EdgeID>()); return std::make_tuple(INVALID_EDGE_WEIGHT, std::vector<NodeID>(), std::vector<EdgeID>());
} }
const auto &partition = facade.GetMultiLevelPartition(); const auto &partition = facade.GetMultiLevelPartition();
BOOST_ASSERT(forward_heap.Empty() || forward_heap.MinKey() < INVALID_EDGE_WEIGHT); BOOST_ASSERT(!forward_heap.Empty() && forward_heap.MinKey() < INVALID_EDGE_WEIGHT);
BOOST_ASSERT(reverse_heap.Empty() || reverse_heap.MinKey() < INVALID_EDGE_WEIGHT); BOOST_ASSERT(!reverse_heap.Empty() && reverse_heap.MinKey() < INVALID_EDGE_WEIGHT);
// run two-Target Dijkstra routing step. // run two-Target Dijkstra routing step.
NodeID middle = SPECIAL_NODEID; NodeID middle = SPECIAL_NODEID;
EdgeWeight weight = weight_upper_bound; EdgeWeight weight = weight_upper_bound;
EdgeWeight forward_heap_min = forward_heap.MinKey();
EdgeWeight forward_heap_min = 0; EdgeWeight reverse_heap_min = reverse_heap.MinKey();
if (!forward_heap.Empty())
forward_heap_min = forward_heap.MinKey();
EdgeWeight reverse_heap_min = 0;
if (!reverse_heap.Empty())
reverse_heap_min = reverse_heap.MinKey();
while (forward_heap.Size() + reverse_heap.Size() > 0 && while (forward_heap.Size() + reverse_heap.Size() > 0 &&
forward_heap_min + reverse_heap_min < weight) forward_heap_min + reverse_heap_min < weight)
{ {
@ -662,7 +657,11 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
const PhantomNode &target_phantom, const PhantomNode &target_phantom,
EdgeWeight weight_upper_bound = INVALID_EDGE_WEIGHT) EdgeWeight weight_upper_bound = INVALID_EDGE_WEIGHT)
{ {
forward_heap.Clear();
reverse_heap.Clear();
const PhantomNodes phantom_nodes{source_phantom, target_phantom}; const PhantomNodes phantom_nodes{source_phantom, target_phantom};
insertNodesInHeaps(forward_heap, reverse_heap, phantom_nodes);
EdgeWeight weight = INVALID_EDGE_WEIGHT; EdgeWeight weight = INVALID_EDGE_WEIGHT;
std::vector<NodeID> unpacked_nodes; std::vector<NodeID> unpacked_nodes;
@ -681,22 +680,11 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
return std::numeric_limits<double>::max(); return std::numeric_limits<double>::max();
} }
EdgeDistance distance = 0; std::vector<PathData> unpacked_path;
if (!unpacked_nodes.empty()) annotatePath(facade, phantom_nodes, unpacked_nodes, unpacked_edges, unpacked_path);
{
distance = std::accumulate(unpacked_nodes.begin(),
std::prev(unpacked_nodes.end()),
EdgeDistance{0},
[&](const EdgeDistance distance, const auto node_id) {
return distance + computeEdgeDistance(facade, node_id);
});
}
distance = adjustPathDistanceToPhantomNodes( return getPathDistance(facade, unpacked_path, source_phantom, target_phantom);
unpacked_nodes, phantom_nodes.source_phantom, phantom_nodes.target_phantom, distance);
return distance;
} }
} // namespace mld } // namespace mld

View File

@ -23,6 +23,9 @@ namespace detail
{ {
const constexpr double DEGREE_TO_RAD = 0.017453292519943295769236907684886; const constexpr double DEGREE_TO_RAD = 0.017453292519943295769236907684886;
const constexpr double RAD_TO_DEGREE = 1. / DEGREE_TO_RAD; const constexpr double RAD_TO_DEGREE = 1. / DEGREE_TO_RAD;
// earth radius varies between 6,356.750-6,378.135 km (3,949.901-3,963.189mi)
// The IUGG value for the equatorial radius is 6378.137 km (3963.19 miles)
const constexpr long double EARTH_RADIUS = 6372797.560856;
inline double degToRad(const double degree) inline double degToRad(const double degree)
{ {

View File

@ -240,12 +240,74 @@ void calculateDistances(typename SearchEngineData<ch::Algorithm>::ManyToManyQuer
} }
if (!packed_leg.empty()) if (!packed_leg.empty())
{ {
EdgeDistance annotation = auto annotation =
ch::calculateEBGNodeAnnotations(facade, packed_leg.begin(), packed_leg.end()); ch::calculateEBGNodeAnnotations(facade, packed_leg.begin(), packed_leg.end());
annotation = adjustPathDistanceToPhantomNodes(
packed_leg, source_phantom, target_phantom, annotation);
distances_table[row_index * number_of_targets + column_index] = annotation; distances_table[row_index * number_of_targets + column_index] = annotation;
// check the direction of travel to figure out how to calculate the offset to/from
// the source/target
if (source_phantom.forward_segment_id.id == packed_leg.front())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// -->s <-- subtract offset to start at source
// ......... <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
EdgeDistance offset = source_phantom.GetForwardDistance();
distances_table[row_index * number_of_targets + column_index] -= offset;
}
else if (source_phantom.reverse_segment_id.id == packed_leg.front())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// s<------- <-- subtract offset to start at source
// ... <-- want this distance
// entry 0---1---2---3 <-- 3 is exit node
EdgeDistance offset = source_phantom.GetReverseDistance();
distances_table[row_index * number_of_targets + column_index] -= offset;
}
if (target_phantom.forward_segment_id.id == packed_leg.back())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// ++>t <-- add offset to get to target
// ................ <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
EdgeDistance offset = target_phantom.GetForwardDistance();
distances_table[row_index * number_of_targets + column_index] += offset;
}
else if (target_phantom.reverse_segment_id.id == packed_leg.back())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// <++t <-- add offset to get from target
// ................ <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
EdgeDistance offset = target_phantom.GetReverseDistance();
distances_table[row_index * number_of_targets + column_index] += offset;
}
}
else
{
// there is no shortcut to unpack. source and target are on the same EBG Node.
// if the offset of the target is greater than the offset of the source, subtract it
if (target_phantom.GetForwardDistance() > source_phantom.GetForwardDistance())
{
// --------->t <-- offsets
// ->s <-- subtract source offset from target offset
// ......... <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
EdgeDistance offset =
target_phantom.GetForwardDistance() - source_phantom.GetForwardDistance();
distances_table[row_index * number_of_targets + column_index] = offset;
}
else
{
// s<--- <-- offsets
// t<--------- <-- subtract source offset from target offset
// ...... <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
EdgeDistance offset =
target_phantom.GetReverseDistance() - source_phantom.GetReverseDistance();
distances_table[row_index * number_of_targets + column_index] = offset;
}
} }
packed_leg.clear(); packed_leg.clear();
} }

View File

@ -227,9 +227,6 @@ SubMatchingList mapMatching(SearchEngineData<Algorithm> &engine_working_data,
{ {
continue; continue;
} }
forward_heap.Clear();
const auto &source_phantom = prev_unbroken_timestamps_list[s].phantom_node;
insertSourceInHeap(forward_heap, source_phantom);
for (const auto s_prime : util::irange<std::size_t>(0UL, current_viterbi.size())) for (const auto s_prime : util::irange<std::size_t>(0UL, current_viterbi.size()))
{ {
@ -240,19 +237,14 @@ SubMatchingList mapMatching(SearchEngineData<Algorithm> &engine_working_data,
continue; continue;
} }
reverse_heap.Clear(); double network_distance =
const auto &target_phantom = current_timestamps_list[s_prime].phantom_node; getNetworkDistance(engine_working_data,
insertTargetInHeap(reverse_heap, target_phantom); facade,
forward_heap,
double network_distance = getNetworkDistance(engine_working_data, reverse_heap,
facade, prev_unbroken_timestamps_list[s].phantom_node,
forward_heap, current_timestamps_list[s_prime].phantom_node,
reverse_heap, weight_upper_bound);
source_phantom,
target_phantom,
weight_upper_bound);
network_distance = std::round(network_distance * 10) / 10;
// get distance diff between loc1/2 and locs/s_prime // get distance diff between loc1/2 and locs/s_prime
const auto d_t = std::abs(network_distance - haversine_distance); const auto d_t = std::abs(network_distance - haversine_distance);

View File

@ -33,79 +33,6 @@ bool needsLoopBackwards(const PhantomNodes &phantoms)
return needsLoopBackwards(phantoms.source_phantom, phantoms.target_phantom); return needsLoopBackwards(phantoms.source_phantom, phantoms.target_phantom);
} }
EdgeDistance adjustPathDistanceToPhantomNodes(const std::vector<NodeID> &path,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom,
const EdgeDistance uncorrected_distance)
{
EdgeDistance distance = uncorrected_distance;
if (!path.empty())
{
// check the direction of travel to figure out how to calculate the offset to/from
// the source/target
if (source_phantom.forward_segment_id.id == path.front())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// -->s <-- subtract offset to start at source
// ......... <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
distance -= source_phantom.GetForwardDistance();
}
else if (source_phantom.reverse_segment_id.id == path.front())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// s<------- <-- subtract offset to start at source
// ... <-- want this distance
// entry 0---1---2---3 <-- 3 is exit node
distance -= source_phantom.GetReverseDistance();
}
if (target_phantom.forward_segment_id.id == path.back())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// ++>t <-- add offset to get to target
// ................ <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
distance += target_phantom.GetForwardDistance();
}
else if (target_phantom.reverse_segment_id.id == path.back())
{
// ............ <-- calculateEGBAnnotation returns distance from 0 to 3
// <++t <-- add offset to get from target
// ................ <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
distance += target_phantom.GetReverseDistance();
}
}
else
{
// there is no shortcut to unpack. source and target are on the same EBG Node.
// if the offset of the target is greater than the offset of the source, subtract it
if (target_phantom.GetForwardDistance() > source_phantom.GetForwardDistance())
{
// --------->t <-- offsets
// ->s <-- subtract source offset from target offset
// ......... <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
distance = target_phantom.GetForwardDistance() - source_phantom.GetForwardDistance();
}
else
{
// s<--- <-- offsets
// t<--------- <-- subtract source offset from target offset
// ...... <-- want this distance as result
// entry 0---1---2---3--- <-- 3 is exit node
distance = target_phantom.GetReverseDistance() - source_phantom.GetReverseDistance();
}
}
BOOST_ASSERT_MSG(distance >= 0 || distance > -1.0f,
"Distance correction generated negative number");
// guard against underflow errors caused by rounding
distance = std::max(EdgeDistance{0}, distance);
return distance;
}
} // namespace routing_algorithms } // namespace routing_algorithms
} // namespace engine } // namespace engine
} // namespace osrm } // namespace osrm

View File

@ -100,7 +100,7 @@ void search(SearchEngineData<Algorithm> & /*engine_working_data*/,
const PhantomNodes & /*phantom_nodes*/, const PhantomNodes & /*phantom_nodes*/,
const EdgeWeight weight_upper_bound) const EdgeWeight weight_upper_bound)
{ {
if (forward_heap.Empty() && reverse_heap.Empty()) if (forward_heap.Empty() || reverse_heap.Empty())
{ {
weight = INVALID_EDGE_WEIGHT; weight = INVALID_EDGE_WEIGHT;
return; return;
@ -110,14 +110,10 @@ void search(SearchEngineData<Algorithm> & /*engine_working_data*/,
weight = weight_upper_bound; weight = weight_upper_bound;
// get offset to account for offsets on phantom nodes on compressed edges // get offset to account for offsets on phantom nodes on compressed edges
EdgeWeight min_edge_offset = 0; const auto min_edge_offset = std::min(0, forward_heap.MinKey());
if (forward_heap.Size() > 0) BOOST_ASSERT(min_edge_offset <= 0);
{
min_edge_offset = std::min(min_edge_offset, forward_heap.MinKey());
BOOST_ASSERT(min_edge_offset <= 0);
}
// we only every insert negative offsets for nodes in the forward heap // we only every insert negative offsets for nodes in the forward heap
BOOST_ASSERT(reverse_heap.Empty() || reverse_heap.MinKey() >= 0); BOOST_ASSERT(reverse_heap.MinKey() >= 0);
// run two-Target Dijkstra routing step. // run two-Target Dijkstra routing step.
while (0 < (forward_heap.Size() + reverse_heap.Size())) while (0 < (forward_heap.Size() + reverse_heap.Size()))
@ -180,6 +176,11 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
const PhantomNode &target_phantom, const PhantomNode &target_phantom,
EdgeWeight weight_upper_bound) EdgeWeight weight_upper_bound)
{ {
forward_heap.Clear();
reverse_heap.Clear();
insertNodesInHeaps(forward_heap, reverse_heap, {source_phantom, target_phantom});
EdgeWeight weight = INVALID_EDGE_WEIGHT; EdgeWeight weight = INVALID_EDGE_WEIGHT;
std::vector<NodeID> packed_path; std::vector<NodeID> packed_path;
search(engine_working_data, search(engine_working_data,
@ -198,31 +199,14 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
return std::numeric_limits<double>::max(); return std::numeric_limits<double>::max();
} }
EdgeDistance distance = 0; std::vector<PathData> unpacked_path;
unpackPath(facade,
packed_path.begin(),
packed_path.end(),
{source_phantom, target_phantom},
unpacked_path);
std::vector<NodeID> unpacked_nodes; return getPathDistance(facade, unpacked_path, source_phantom, target_phantom);
unpacked_nodes.reserve(packed_path.size());
if (!packed_path.empty())
{
unpacked_nodes.push_back(packed_path.front());
unpackPath(
facade, packed_path.begin(), packed_path.end(), [&](const auto &edge, const auto &) {
BOOST_ASSERT(edge.first == unpacked_nodes.back());
unpacked_nodes.push_back(edge.second);
});
distance = std::accumulate(unpacked_nodes.begin(),
std::prev(unpacked_nodes.end()),
EdgeDistance{0},
[&](const EdgeDistance distance, const auto node_id) {
return distance + computeEdgeDistance(facade, node_id);
});
}
distance =
adjustPathDistanceToPhantomNodes(unpacked_nodes, source_phantom, target_phantom, distance);
return distance;
} }
} // namespace ch } // namespace ch

View File

@ -22,11 +22,6 @@ namespace coordinate_calculation
namespace namespace
{ {
// earth radius varies between 6,356.750-6,378.135 km (3,949.901-3,963.189mi)
// The IUGG value for the equatorial radius is 6378.137 km (3963.19 miles)
const constexpr double EARTH_RADIUS = 6372797.560856;
class CheapRulerContainer class CheapRulerContainer
{ {
public: public:
@ -117,7 +112,7 @@ double haversineDistance(const Coordinate coordinate_1, const Coordinate coordin
const double aharv = std::pow(std::sin(dlat / 2.0), 2.0) + const double aharv = std::pow(std::sin(dlat / 2.0), 2.0) +
std::cos(dlat1) * std::cos(dlat2) * std::pow(std::sin(dlong / 2.), 2); std::cos(dlat1) * std::cos(dlat2) * std::pow(std::sin(dlong / 2.), 2);
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv)); const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
return EARTH_RADIUS * charv; return detail::EARTH_RADIUS * charv;
} }
double greatCircleDistance(const Coordinate coordinate_1, const Coordinate coordinate_2) double greatCircleDistance(const Coordinate coordinate_1, const Coordinate coordinate_2)
@ -138,7 +133,7 @@ double greatCircleDistance(const Coordinate coordinate_1, const Coordinate coord
const double x_value = (float_lon2 - float_lon1) * std::cos((float_lat1 + float_lat2) / 2.0); const double x_value = (float_lon2 - float_lon1) * std::cos((float_lat1 + float_lat2) / 2.0);
const double y_value = float_lat2 - float_lat1; const double y_value = float_lat2 - float_lat1;
return std::hypot(x_value, y_value) * EARTH_RADIUS; return std::hypot(x_value, y_value) * detail::EARTH_RADIUS;
} }
double perpendicularDistance(const Coordinate segment_source, double perpendicularDistance(const Coordinate segment_source,