Douglas Peucker now twice as fast by using integer arithmetic only
This commit is contained in:
parent
9dd45cceab
commit
48c6145bdf
@ -29,7 +29,7 @@ or see http://www.gnu.org/licenses/agpl.txt.
|
||||
#include "../DataStructures/Coordinate.h"
|
||||
|
||||
/*This class object computes the bitvector of indicating generalized input points
|
||||
* according to the (Ramer-)Douglas-Peucker algorithm.
|
||||
* according to the (Ramer-)Douglas-Peucker algorithm. Runtime n\log n calls to fastDistance
|
||||
*
|
||||
* Input is vector of pairs. Each pair consists of the point information and a bit
|
||||
* indicating if the points is present in the generalization.
|
||||
@ -37,7 +37,7 @@ or see http://www.gnu.org/licenses/agpl.txt.
|
||||
|
||||
//These thresholds are more or less heuristically chosen.
|
||||
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
||||
static double DouglasPeuckerThresholds[19] = { 32000000., 16240000., 80240000., 40240000., 20000000., 10000000., 500000., 240000., 120000., 60000., 30000., 19000., 5000., 2000., 200, 16, 6, 3. , 3. };
|
||||
static double DouglasPeuckerThresholds[19] = { 32000000, 16240000, 80240000, 40240000, 20000000, 10000000, 500000, 240000, 120000, 60000, 30000, 19000, 5000, 2000, 200, 16, 6, 3, 3 };
|
||||
|
||||
template<class PointT>
|
||||
class DouglasPeucker {
|
||||
@ -45,58 +45,27 @@ private:
|
||||
typedef std::pair<std::size_t, std::size_t> PairOfPoints;
|
||||
//Stack to simulate the recursion
|
||||
std::stack<PairOfPoints > recursionStack;
|
||||
|
||||
double ComputeDistanceOfPointToLine(const _Coordinate& inputPoint, const _Coordinate& source, const _Coordinate& target) const {
|
||||
double r = 0.;
|
||||
const double x = static_cast<double>(inputPoint.lat);
|
||||
const double y = static_cast<double>(inputPoint.lon);
|
||||
const double a = static_cast<double>(source.lat);
|
||||
const double b = static_cast<double>(source.lon);
|
||||
const double c = static_cast<double>(target.lat);
|
||||
const double d = static_cast<double>(target.lon);
|
||||
double p,q,mX,nY;
|
||||
if(fabs(a - c) <= FLT_EPSILON) {
|
||||
const double m = (d-b)/(c-a); // slope
|
||||
// Projection of (x,y) on line joining (a,b) and (c,d)
|
||||
p = ((x + (m*y)) + (m*m*a - m*b))/(1 + m*m);
|
||||
q = b + m*(p - a);
|
||||
} else {
|
||||
p = c;
|
||||
q = y;
|
||||
}
|
||||
nY = (d*p - c*q)/(a*d - b*c);
|
||||
mX = (p - nY*a)/c;// These values are actually n/m+n and m/m+n , we neednot calculate the values of m an n as we are just interested in the ratio
|
||||
r = std::isnan(mX) ? 0. : mX;
|
||||
if(r<=0.){
|
||||
return ((b - y)*(b - y) + (a - x)*(a - x));
|
||||
}
|
||||
else if(r >= 1.){
|
||||
return ((d - y)*(d - y) + (c - x)*(c - x));
|
||||
|
||||
}
|
||||
// point lies in between
|
||||
return (p-x)*(p-x) + (q-y)*(q-y);
|
||||
}
|
||||
|
||||
public:
|
||||
void Run(std::vector<PointT> & inputVector, const unsigned zoomLevel) {
|
||||
const unsigned sizeOfInputVector = inputVector.size();
|
||||
{
|
||||
assert(zoomLevel < 19);
|
||||
assert(1 < inputVector.size());
|
||||
std::size_t leftBorderOfRange = 0;
|
||||
std::size_t rightBorderOfRange = 1;
|
||||
|
||||
//Sweep linerarily over array and identify those ranges that need to be checked
|
||||
// recursionStack.hint(inputVector.size());
|
||||
//decision points have been previously marked
|
||||
do {
|
||||
assert(inputVector[leftBorderOfRange].necessary);
|
||||
assert(inputVector[inputVector.size()-1].necessary);
|
||||
assert(inputVector[inputVector.back()].necessary);
|
||||
|
||||
if(inputVector[rightBorderOfRange].necessary) {
|
||||
recursionStack.push(std::make_pair(leftBorderOfRange, rightBorderOfRange));
|
||||
leftBorderOfRange = rightBorderOfRange;
|
||||
}
|
||||
++rightBorderOfRange;
|
||||
} while( rightBorderOfRange < inputVector.size());
|
||||
} while( rightBorderOfRange < sizeOfInputVector);
|
||||
}
|
||||
while(!recursionStack.empty()) {
|
||||
//pop next element
|
||||
@ -104,13 +73,13 @@ public:
|
||||
recursionStack.pop();
|
||||
assert(inputVector[pair.first].necessary);
|
||||
assert(inputVector[pair.second].necessary);
|
||||
assert(pair.second < inputVector.size());
|
||||
assert(pair.second < sizeOfInputVector);
|
||||
assert(pair.first < pair.second);
|
||||
double maxDistance = -DBL_MAX;
|
||||
int maxDistance = -INT_MIN;
|
||||
std::size_t indexOfFarthestElement = pair.second;
|
||||
//find index idx of element with maxDistance
|
||||
for(std::size_t i = pair.first+1; i < pair.second; ++i){
|
||||
const double distance = std::fabs(ComputeDistanceOfPointToLine(inputVector[i].location, inputVector[pair.first].location, inputVector[pair.second].location));
|
||||
const int distance = fastDistance(inputVector[i].location, inputVector[pair.first].location, inputVector[pair.second].location);
|
||||
if(distance > DouglasPeuckerThresholds[zoomLevel] && distance > maxDistance) {
|
||||
indexOfFarthestElement = i;
|
||||
maxDistance = distance;
|
||||
@ -127,6 +96,34 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This distance computation does integer arithmetic only and is about twice as fast as
|
||||
* the other distance function. It is an approximation only, but works more or less ok.
|
||||
*/
|
||||
template<class CoordT>
|
||||
double fastDistance(const CoordT& point, const CoordT& segA, const CoordT& segB) {
|
||||
int p2x = (segB.lon - segA.lat);
|
||||
int p2y = (segB.lon - segA.lat);
|
||||
int something = p2x*p2x + p2y*p2y;
|
||||
int u = ((point.lon - segA.lon) * p2x + (point.lat - segA.lat) * p2y) / something;
|
||||
|
||||
if (u > 1)
|
||||
u = 1;
|
||||
else if (u < 0)
|
||||
u = 0;
|
||||
|
||||
int x = segA.lon + u * p2x;
|
||||
int y = segA.lat + u * p2y;
|
||||
|
||||
int dx = x - point.lon;
|
||||
int dy = y - point.lat;
|
||||
|
||||
int dist = (dx*dx + dy*dy);
|
||||
|
||||
return dist;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif /* DOUGLASPEUCKER_H_ */
|
||||
|
Loading…
Reference in New Issue
Block a user