Refactor routing_algorithms to only contain free functions
This commit is contained in:
parent
2fa8d0f534
commit
436b34ffea
@ -1,107 +0,0 @@
|
||||
#ifndef EDGE_UNPACKER_H
|
||||
#define EDGE_UNPACKER_H
|
||||
|
||||
#include "extractor/guidance/turn_instruction.hpp"
|
||||
#include "extractor/travel_mode.hpp"
|
||||
#include "engine/phantom_node.hpp"
|
||||
#include "osrm/coordinate.hpp"
|
||||
#include "util/guidance/turn_lanes.hpp"
|
||||
#include "util/typedefs.hpp"
|
||||
|
||||
#include <stack>
|
||||
#include <vector>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace engine
|
||||
{
|
||||
|
||||
/**
|
||||
* Given a sequence of connected `NodeID`s in the CH graph, performs a depth-first unpacking of
|
||||
* the shortcut
|
||||
* edges. For every "original" edge found, it calls the `callback` with the two NodeIDs for the
|
||||
* edge, and the EdgeData
|
||||
* for that edge.
|
||||
*
|
||||
* The primary purpose of this unpacking is to expand a path through the CH into the original
|
||||
* route through the
|
||||
* pre-contracted graph.
|
||||
*
|
||||
* Because of the depth-first-search, the `callback` will effectively be called in sequence for
|
||||
* the original route
|
||||
* from beginning to end.
|
||||
*
|
||||
* @param packed_path_begin iterator pointing to the start of the NodeID list
|
||||
* @param packed_path_end iterator pointing to the end of the NodeID list
|
||||
* @param callback void(const std::pair<NodeID, NodeID>, const EdgeData &) called for each
|
||||
* original edge found.
|
||||
*/
|
||||
|
||||
template <typename DataFacadeT, typename BidirectionalIterator, typename Callback>
|
||||
inline void UnpackCHPath(const DataFacadeT &facade,
|
||||
BidirectionalIterator packed_path_begin,
|
||||
BidirectionalIterator packed_path_end,
|
||||
Callback &&callback)
|
||||
{
|
||||
// make sure we have at least something to unpack
|
||||
if (packed_path_begin == packed_path_end)
|
||||
return;
|
||||
|
||||
using EdgeData = typename DataFacadeT::EdgeData;
|
||||
|
||||
std::stack<std::pair<NodeID, NodeID>> recursion_stack;
|
||||
|
||||
// We have to push the path in reverse order onto the stack because it's LIFO.
|
||||
for (auto current = std::prev(packed_path_end); current != packed_path_begin;
|
||||
current = std::prev(current))
|
||||
{
|
||||
recursion_stack.emplace(*std::prev(current), *current);
|
||||
}
|
||||
|
||||
std::pair<NodeID, NodeID> edge;
|
||||
while (!recursion_stack.empty())
|
||||
{
|
||||
edge = recursion_stack.top();
|
||||
recursion_stack.pop();
|
||||
|
||||
// Look for an edge on the forward CH graph (.forward)
|
||||
EdgeID smaller_edge_id = facade.FindSmallestEdge(
|
||||
edge.first, edge.second, [](const EdgeData &data) { return data.forward; });
|
||||
|
||||
// If we didn't find one there, the we might be looking at a part of the path that
|
||||
// was found using the backward search. Here, we flip the node order (.second, .first)
|
||||
// and only consider edges with the `.backward` flag.
|
||||
if (SPECIAL_EDGEID == smaller_edge_id)
|
||||
{
|
||||
smaller_edge_id = facade.FindSmallestEdge(
|
||||
edge.second, edge.first, [](const EdgeData &data) { return data.backward; });
|
||||
}
|
||||
|
||||
// If we didn't find anything *still*, then something is broken and someone has
|
||||
// called this function with bad values.
|
||||
BOOST_ASSERT_MSG(smaller_edge_id != SPECIAL_EDGEID, "Invalid smaller edge ID");
|
||||
|
||||
const auto &data = facade.GetEdgeData(smaller_edge_id);
|
||||
BOOST_ASSERT_MSG(data.weight != std::numeric_limits<EdgeWeight>::max(),
|
||||
"edge weight invalid");
|
||||
|
||||
// If the edge is a shortcut, we need to add the two halfs to the stack.
|
||||
if (data.shortcut)
|
||||
{ // unpack
|
||||
const NodeID middle_node_id = data.id;
|
||||
// Note the order here - we're adding these to a stack, so we
|
||||
// want the first->middle to get visited before middle->second
|
||||
recursion_stack.emplace(middle_node_id, edge.second);
|
||||
recursion_stack.emplace(edge.first, middle_node_id);
|
||||
}
|
||||
else
|
||||
{
|
||||
// We found an original edge, call our callback.
|
||||
std::forward<Callback>(callback)(edge, data);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // EDGE_UNPACKER_H
|
@ -19,15 +19,14 @@ namespace engine
|
||||
class RoutingAlgorithmsInterface
|
||||
{
|
||||
public:
|
||||
virtual void AlternativeRouting(const PhantomNodes &phantom_node_pair,
|
||||
InternalRouteResult &raw_route_data) const = 0;
|
||||
virtual InternalRouteResult AlternativeRouting(const PhantomNodes &phantom_node_pair) const = 0;
|
||||
|
||||
virtual void ShortestRouting(const std::vector<PhantomNodes> &phantom_node_pair,
|
||||
const boost::optional<bool> continue_straight_at_waypoint,
|
||||
InternalRouteResult &raw_route_data) const = 0;
|
||||
virtual InternalRouteResult
|
||||
ShortestRouting(const std::vector<PhantomNodes> &phantom_node_pair,
|
||||
const boost::optional<bool> continue_straight_at_waypoint) const = 0;
|
||||
|
||||
virtual void DirectShortestPathRouting(const std::vector<PhantomNodes> &phantom_node_pair,
|
||||
InternalRouteResult &raw_route_data) const = 0;
|
||||
virtual InternalRouteResult
|
||||
DirectShortestPathRouting(const std::vector<PhantomNodes> &phantom_node_pair) const = 0;
|
||||
|
||||
virtual std::vector<EdgeWeight>
|
||||
ManyToManyRouting(const std::vector<PhantomNode> &phantom_nodes,
|
||||
@ -53,29 +52,28 @@ template <typename AlgorithmT> class RoutingAlgorithms final : public RoutingAlg
|
||||
public:
|
||||
RoutingAlgorithms(SearchEngineData &heaps,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<AlgorithmT> &facade)
|
||||
: facade(facade), alternative_routing(heaps), shortest_path_routing(heaps),
|
||||
direct_shortest_path_routing(heaps), many_to_many_routing(heaps), map_matching(heaps)
|
||||
: heaps(heaps), facade(facade)
|
||||
{
|
||||
}
|
||||
|
||||
void AlternativeRouting(const PhantomNodes &phantom_node_pair,
|
||||
InternalRouteResult &raw_route_data) const final override
|
||||
InternalRouteResult
|
||||
AlternativeRouting(const PhantomNodes &phantom_node_pair) const final override
|
||||
{
|
||||
alternative_routing(facade, phantom_node_pair, raw_route_data);
|
||||
return routing_algorithms::alternativePathSearch(heaps, facade, phantom_node_pair);
|
||||
}
|
||||
|
||||
void ShortestRouting(const std::vector<PhantomNodes> &phantom_node_pair,
|
||||
const boost::optional<bool> continue_straight_at_waypoint,
|
||||
InternalRouteResult &raw_route_data) const final override
|
||||
InternalRouteResult
|
||||
ShortestRouting(const std::vector<PhantomNodes> &phantom_node_pair,
|
||||
const boost::optional<bool> continue_straight_at_waypoint) const final override
|
||||
{
|
||||
shortest_path_routing(
|
||||
facade, phantom_node_pair, continue_straight_at_waypoint, raw_route_data);
|
||||
return routing_algorithms::shortestPathSearch(
|
||||
heaps, facade, phantom_node_pair, continue_straight_at_waypoint);
|
||||
}
|
||||
|
||||
void DirectShortestPathRouting(const std::vector<PhantomNodes> &phantom_node_pair,
|
||||
InternalRouteResult &raw_route_data) const final override
|
||||
InternalRouteResult DirectShortestPathRouting(
|
||||
const std::vector<PhantomNodes> &phantom_node_pair) const final override
|
||||
{
|
||||
direct_shortest_path_routing(facade, phantom_node_pair, raw_route_data);
|
||||
return routing_algorithms::directShortestPathSearch(heaps, facade, phantom_node_pair);
|
||||
}
|
||||
|
||||
std::vector<EdgeWeight>
|
||||
@ -83,7 +81,8 @@ template <typename AlgorithmT> class RoutingAlgorithms final : public RoutingAlg
|
||||
const std::vector<std::size_t> &source_indices,
|
||||
const std::vector<std::size_t> &target_indices) const final override
|
||||
{
|
||||
return many_to_many_routing(facade, phantom_nodes, source_indices, target_indices);
|
||||
return routing_algorithms::manyToManySearch(
|
||||
heaps, facade, phantom_nodes, source_indices, target_indices);
|
||||
}
|
||||
|
||||
routing_algorithms::SubMatchingList MapMatching(
|
||||
@ -92,32 +91,30 @@ template <typename AlgorithmT> class RoutingAlgorithms final : public RoutingAlg
|
||||
const std::vector<unsigned> &trace_timestamps,
|
||||
const std::vector<boost::optional<double>> &trace_gps_precision) const final override
|
||||
{
|
||||
return map_matching(
|
||||
facade, candidates_list, trace_coordinates, trace_timestamps, trace_gps_precision);
|
||||
return routing_algorithms::mapMatching(heaps,
|
||||
facade,
|
||||
candidates_list,
|
||||
trace_coordinates,
|
||||
trace_timestamps,
|
||||
trace_gps_precision);
|
||||
}
|
||||
|
||||
std::vector<routing_algorithms::TurnData>
|
||||
TileTurns(const std::vector<datafacade::BaseDataFacade::RTreeLeaf> &edges,
|
||||
const std::vector<std::size_t> &sorted_edge_indexes) const final override
|
||||
{
|
||||
return tile_turns(facade, edges, sorted_edge_indexes);
|
||||
return routing_algorithms::getTileTurns(facade, edges, sorted_edge_indexes);
|
||||
}
|
||||
|
||||
bool HasAlternativeRouting() const final override
|
||||
{
|
||||
return algorithm_trais::HasAlternativeRouting<AlgorithmT>()(facade);
|
||||
};
|
||||
}
|
||||
|
||||
private:
|
||||
SearchEngineData &heaps;
|
||||
// Owned by shared-ptr passed to the query
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<AlgorithmT> &facade;
|
||||
|
||||
mutable routing_algorithms::AlternativeRouting<AlgorithmT> alternative_routing;
|
||||
mutable routing_algorithms::ShortestPathRouting<AlgorithmT> shortest_path_routing;
|
||||
mutable routing_algorithms::DirectShortestPathRouting<AlgorithmT> direct_shortest_path_routing;
|
||||
mutable routing_algorithms::ManyToManyRouting<AlgorithmT> many_to_many_routing;
|
||||
mutable routing_algorithms::MapMatching<AlgorithmT> map_matching;
|
||||
routing_algorithms::TileTurns<AlgorithmT> tile_turns;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
@ -1,22 +1,11 @@
|
||||
#ifndef ALTERNATIVE_PATH_ROUTING_HPP
|
||||
#define ALTERNATIVE_PATH_ROUTING_HPP
|
||||
|
||||
#include "engine/datafacade/datafacade_base.hpp"
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
#include "engine/datafacade/contiguous_internalmem_datafacade.hpp"
|
||||
#include "engine/internal_route_result.hpp"
|
||||
|
||||
#include "engine/algorithm.hpp"
|
||||
#include "engine/search_engine_data.hpp"
|
||||
#include "util/integer_range.hpp"
|
||||
|
||||
#include <boost/assert.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
@ -25,181 +14,13 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
const double constexpr VIAPATH_ALPHA = 0.10;
|
||||
const double constexpr VIAPATH_EPSILON = 0.15; // alternative at most 15% longer
|
||||
const double constexpr VIAPATH_GAMMA = 0.75; // alternative shares at most 75% with the shortest.
|
||||
|
||||
template <typename AlgorithmT> class AlternativeRouting;
|
||||
|
||||
template <> class AlternativeRouting<algorithm::CH> final : private BasicRouting<algorithm::CH>
|
||||
{
|
||||
using super = BasicRouting<algorithm::CH>;
|
||||
using FacadeT = datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH>;
|
||||
using QueryHeap = SearchEngineData::QueryHeap;
|
||||
using SearchSpaceEdge = std::pair<NodeID, NodeID>;
|
||||
|
||||
struct RankedCandidateNode
|
||||
{
|
||||
RankedCandidateNode(const NodeID node, const int length, const int sharing)
|
||||
: node(node), length(length), sharing(sharing)
|
||||
{
|
||||
}
|
||||
|
||||
NodeID node;
|
||||
int length;
|
||||
int sharing;
|
||||
|
||||
bool operator<(const RankedCandidateNode &other) const
|
||||
{
|
||||
return (2 * length + sharing) < (2 * other.length + other.sharing);
|
||||
}
|
||||
};
|
||||
SearchEngineData &engine_working_data;
|
||||
|
||||
public:
|
||||
AlternativeRouting(SearchEngineData &engine_working_data)
|
||||
: engine_working_data(engine_working_data)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~AlternativeRouting() {}
|
||||
|
||||
void operator()(const FacadeT &facade,
|
||||
const PhantomNodes &phantom_node_pair,
|
||||
InternalRouteResult &raw_route_data);
|
||||
|
||||
private:
|
||||
// unpack alternate <s,..,v,..,t> by exploring search spaces from v
|
||||
void RetrievePackedAlternatePath(const QueryHeap &forward_heap1,
|
||||
const QueryHeap &reverse_heap1,
|
||||
const QueryHeap &forward_heap2,
|
||||
const QueryHeap &reverse_heap2,
|
||||
const NodeID s_v_middle,
|
||||
const NodeID v_t_middle,
|
||||
std::vector<NodeID> &packed_path) const;
|
||||
|
||||
// TODO: reorder parameters
|
||||
// compute and unpack <s,..,v> and <v,..,t> by exploring search spaces
|
||||
// from v and intersecting against queues. only half-searches have to be
|
||||
// done at this stage
|
||||
void ComputeLengthAndSharingOfViaPath(const FacadeT &facade,
|
||||
const NodeID via_node,
|
||||
int *real_length_of_via_path,
|
||||
int *sharing_of_via_path,
|
||||
const std::vector<NodeID> &packed_shortest_path,
|
||||
const EdgeWeight min_edge_offset);
|
||||
|
||||
// todo: reorder parameters
|
||||
template <bool is_forward_directed>
|
||||
void AlternativeRoutingStep(const FacadeT &facade,
|
||||
QueryHeap &heap1,
|
||||
QueryHeap &heap2,
|
||||
NodeID *middle_node,
|
||||
EdgeWeight *upper_bound_to_shortest_path_weight,
|
||||
std::vector<NodeID> &search_space_intersection,
|
||||
std::vector<SearchSpaceEdge> &search_space,
|
||||
const EdgeWeight min_edge_offset) const
|
||||
{
|
||||
QueryHeap &forward_heap = (is_forward_directed ? heap1 : heap2);
|
||||
QueryHeap &reverse_heap = (is_forward_directed ? heap2 : heap1);
|
||||
|
||||
const NodeID node = forward_heap.DeleteMin();
|
||||
const EdgeWeight weight = forward_heap.GetKey(node);
|
||||
// const NodeID parentnode = forward_heap.GetData(node).parent;
|
||||
// util::Log() << (is_forward_directed ? "[fwd] " : "[rev] ") << "settled
|
||||
// edge ("
|
||||
// << parentnode << "," << node << "), dist: " << weight;
|
||||
|
||||
const auto scaled_weight =
|
||||
static_cast<EdgeWeight>((weight + min_edge_offset) / (1. + VIAPATH_EPSILON));
|
||||
if ((INVALID_EDGE_WEIGHT != *upper_bound_to_shortest_path_weight) &&
|
||||
(scaled_weight > *upper_bound_to_shortest_path_weight))
|
||||
{
|
||||
forward_heap.DeleteAll();
|
||||
return;
|
||||
}
|
||||
|
||||
search_space.emplace_back(forward_heap.GetData(node).parent, node);
|
||||
|
||||
if (reverse_heap.WasInserted(node))
|
||||
{
|
||||
search_space_intersection.emplace_back(node);
|
||||
const EdgeWeight new_weight = reverse_heap.GetKey(node) + weight;
|
||||
if (new_weight < *upper_bound_to_shortest_path_weight)
|
||||
{
|
||||
if (new_weight >= 0)
|
||||
{
|
||||
*middle_node = node;
|
||||
*upper_bound_to_shortest_path_weight = new_weight;
|
||||
// util::Log() << "accepted middle_node " << *middle_node
|
||||
// << " at
|
||||
// weight " << new_weight;
|
||||
// } else {
|
||||
// util::Log() << "discarded middle_node " << *middle_node
|
||||
// << "
|
||||
// at weight " << new_weight;
|
||||
}
|
||||
else
|
||||
{
|
||||
// check whether there is a loop present at the node
|
||||
const auto loop_weight = super::GetLoopWeight<false>(facade, node);
|
||||
const EdgeWeight new_weight_with_loop = new_weight + loop_weight;
|
||||
if (loop_weight != INVALID_EDGE_WEIGHT &&
|
||||
new_weight_with_loop <= *upper_bound_to_shortest_path_weight)
|
||||
{
|
||||
*middle_node = node;
|
||||
*upper_bound_to_shortest_path_weight = loop_weight;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
const bool edge_is_forward_directed =
|
||||
(is_forward_directed ? data.forward : data.backward);
|
||||
if (edge_is_forward_directed)
|
||||
{
|
||||
const NodeID to = facade.GetTarget(edge);
|
||||
const EdgeWeight edge_weight = data.weight;
|
||||
|
||||
BOOST_ASSERT(edge_weight > 0);
|
||||
const EdgeWeight to_weight = weight + edge_weight;
|
||||
|
||||
// New Node discovered -> Add to Heap + Node Info Storage
|
||||
if (!forward_heap.WasInserted(to))
|
||||
{
|
||||
forward_heap.Insert(to, to_weight, node);
|
||||
}
|
||||
// Found a shorter Path -> Update weight
|
||||
else if (to_weight < forward_heap.GetKey(to))
|
||||
{
|
||||
// new parent
|
||||
forward_heap.GetData(to).parent = node;
|
||||
// decreased weight
|
||||
forward_heap.DecreaseKey(to, to_weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// conduct T-Test
|
||||
bool ViaNodeCandidatePassesTTest(const FacadeT &facade,
|
||||
QueryHeap &existing_forward_heap,
|
||||
QueryHeap &existing_reverse_heap,
|
||||
QueryHeap &new_forward_heap,
|
||||
QueryHeap &new_reverse_heap,
|
||||
const RankedCandidateNode &candidate,
|
||||
const int length_of_shortest_path,
|
||||
int *length_of_via_path,
|
||||
NodeID *s_v_middle,
|
||||
NodeID *v_t_middle,
|
||||
const EdgeWeight min_edge_offset) const;
|
||||
};
|
||||
InternalRouteResult
|
||||
alternativePathSearch(SearchEngineData &search_engine_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const PhantomNodes &phantom_node_pair);
|
||||
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
} // namespace osrm
|
||||
|
||||
#endif /* ALTERNATIVE_PATH_ROUTING_HPP */
|
||||
#endif
|
||||
|
@ -1,10 +1,11 @@
|
||||
#ifndef DIRECT_SHORTEST_PATH_HPP
|
||||
#define DIRECT_SHORTEST_PATH_HPP
|
||||
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include "engine/algorithm.hpp"
|
||||
#include "engine/datafacade/contiguous_internalmem_datafacade.hpp"
|
||||
#include "engine/internal_route_result.hpp"
|
||||
#include "engine/search_engine_data.hpp"
|
||||
|
||||
#include "util/typedefs.hpp"
|
||||
|
||||
namespace osrm
|
||||
@ -14,34 +15,16 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
template <typename AlgorithmT> class DirectShortestPathRouting;
|
||||
|
||||
/// This is a striped down version of the general shortest path algorithm.
|
||||
/// The general algorithm always computes two queries for each leg. This is only
|
||||
/// necessary in case of vias, where the directions of the start node is constrainted
|
||||
/// by the previous route.
|
||||
/// This variation is only an optimazation for graphs with slow queries, for example
|
||||
/// not fully contracted graphs.
|
||||
template <>
|
||||
class DirectShortestPathRouting<algorithm::CH> final : public BasicRouting<algorithm::CH>
|
||||
{
|
||||
using super = BasicRouting<algorithm::CH>;
|
||||
using FacadeT = datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH>;
|
||||
using QueryHeap = SearchEngineData::QueryHeap;
|
||||
SearchEngineData &engine_working_data;
|
||||
|
||||
public:
|
||||
DirectShortestPathRouting(SearchEngineData &engine_working_data)
|
||||
: engine_working_data(engine_working_data)
|
||||
{
|
||||
}
|
||||
|
||||
~DirectShortestPathRouting() {}
|
||||
|
||||
void operator()(const FacadeT &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector,
|
||||
InternalRouteResult &raw_route_data) const;
|
||||
};
|
||||
InternalRouteResult directShortestPathSearch(
|
||||
SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector);
|
||||
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
|
@ -1,138 +1,28 @@
|
||||
#ifndef MANY_TO_MANY_ROUTING_HPP
|
||||
#define MANY_TO_MANY_ROUTING_HPP
|
||||
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include "engine/algorithm.hpp"
|
||||
#include "engine/datafacade/contiguous_internalmem_datafacade.hpp"
|
||||
#include "engine/search_engine_data.hpp"
|
||||
|
||||
#include "util/typedefs.hpp"
|
||||
|
||||
#include <boost/assert.hpp>
|
||||
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace engine
|
||||
{
|
||||
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
template <typename AlgorithmT> class ManyToManyRouting;
|
||||
|
||||
template <> class ManyToManyRouting<algorithm::CH> final : public BasicRouting<algorithm::CH>
|
||||
{
|
||||
using super = BasicRouting<algorithm::CH>;
|
||||
using FacadeT = datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH>;
|
||||
using QueryHeap = SearchEngineData::ManyToManyQueryHeap;
|
||||
SearchEngineData &engine_working_data;
|
||||
|
||||
struct NodeBucket
|
||||
{
|
||||
unsigned target_id; // essentially a row in the weight matrix
|
||||
EdgeWeight weight;
|
||||
EdgeWeight duration;
|
||||
NodeBucket(const unsigned target_id, const EdgeWeight weight, const EdgeWeight duration)
|
||||
: target_id(target_id), weight(weight), duration(duration)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
// FIXME This should be replaced by an std::unordered_multimap, though this needs benchmarking
|
||||
using SearchSpaceWithBuckets = std::unordered_map<NodeID, std::vector<NodeBucket>>;
|
||||
|
||||
public:
|
||||
ManyToManyRouting(SearchEngineData &engine_working_data)
|
||||
: engine_working_data(engine_working_data)
|
||||
{
|
||||
}
|
||||
|
||||
std::vector<EdgeWeight> operator()(const FacadeT &facade,
|
||||
std::vector<EdgeWeight>
|
||||
manyToManySearch(SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<PhantomNode> &phantom_nodes,
|
||||
const std::vector<std::size_t> &source_indices,
|
||||
const std::vector<std::size_t> &target_indices) const;
|
||||
|
||||
void ForwardRoutingStep(const FacadeT &facade,
|
||||
const unsigned row_idx,
|
||||
const unsigned number_of_targets,
|
||||
QueryHeap &query_heap,
|
||||
const SearchSpaceWithBuckets &search_space_with_buckets,
|
||||
std::vector<EdgeWeight> &weights_table,
|
||||
std::vector<EdgeWeight> &durations_table) const;
|
||||
|
||||
void BackwardRoutingStep(const FacadeT &facade,
|
||||
const unsigned column_idx,
|
||||
QueryHeap &query_heap,
|
||||
SearchSpaceWithBuckets &search_space_with_buckets) const;
|
||||
|
||||
template <bool forward_direction>
|
||||
inline void RelaxOutgoingEdges(const FacadeT &facade,
|
||||
const NodeID node,
|
||||
const EdgeWeight weight,
|
||||
const EdgeWeight duration,
|
||||
QueryHeap &query_heap) const
|
||||
{
|
||||
for (auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
const bool direction_flag = (forward_direction ? data.forward : data.backward);
|
||||
if (direction_flag)
|
||||
{
|
||||
const NodeID to = facade.GetTarget(edge);
|
||||
const EdgeWeight edge_weight = data.weight;
|
||||
const EdgeWeight edge_duration = data.duration;
|
||||
|
||||
BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid");
|
||||
const EdgeWeight to_weight = weight + edge_weight;
|
||||
const EdgeWeight to_duration = duration + edge_duration;
|
||||
|
||||
// New Node discovered -> Add to Heap + Node Info Storage
|
||||
if (!query_heap.WasInserted(to))
|
||||
{
|
||||
query_heap.Insert(to, to_weight, {node, to_duration});
|
||||
}
|
||||
// Found a shorter Path -> Update weight
|
||||
else if (to_weight < query_heap.GetKey(to))
|
||||
{
|
||||
// new parent
|
||||
query_heap.GetData(to) = {node, to_duration};
|
||||
query_heap.DecreaseKey(to, to_weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Stalling
|
||||
template <bool forward_direction>
|
||||
inline bool StallAtNode(const FacadeT &facade,
|
||||
const NodeID node,
|
||||
const EdgeWeight weight,
|
||||
QueryHeap &query_heap) const
|
||||
{
|
||||
for (auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
const bool reverse_flag = ((!forward_direction) ? data.forward : data.backward);
|
||||
if (reverse_flag)
|
||||
{
|
||||
const NodeID to = facade.GetTarget(edge);
|
||||
const EdgeWeight edge_weight = data.weight;
|
||||
BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid");
|
||||
if (query_heap.WasInserted(to))
|
||||
{
|
||||
if (query_heap.GetKey(to) + edge_weight < weight)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
const std::vector<std::size_t> &target_indices);
|
||||
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
|
@ -1,25 +1,11 @@
|
||||
#ifndef MAP_MATCHING_HPP
|
||||
#define MAP_MATCHING_HPP
|
||||
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include "engine/algorithm.hpp"
|
||||
#include "engine/map_matching/hidden_markov_model.hpp"
|
||||
#include "engine/map_matching/matching_confidence.hpp"
|
||||
#include "engine/datafacade/contiguous_internalmem_datafacade.hpp"
|
||||
#include "engine/map_matching/sub_matching.hpp"
|
||||
#include "engine/search_engine_data.hpp"
|
||||
|
||||
#include "extractor/profile_properties.hpp"
|
||||
#include "util/coordinate_calculation.hpp"
|
||||
#include "util/for_each_pair.hpp"
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include <algorithm>
|
||||
#include <deque>
|
||||
#include <iomanip>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace osrm
|
||||
@ -31,45 +17,16 @@ namespace routing_algorithms
|
||||
|
||||
using CandidateList = std::vector<PhantomNodeWithDistance>;
|
||||
using CandidateLists = std::vector<CandidateList>;
|
||||
using HMM = map_matching::HiddenMarkovModel<CandidateLists>;
|
||||
using SubMatchingList = std::vector<map_matching::SubMatching>;
|
||||
|
||||
constexpr static const unsigned MAX_BROKEN_STATES = 10;
|
||||
static const constexpr double MATCHING_BETA = 10;
|
||||
constexpr static const double MAX_DISTANCE_DELTA = 2000.;
|
||||
static const constexpr double DEFAULT_GPS_PRECISION = 5;
|
||||
|
||||
template <typename AlgorithmT> class MapMatching;
|
||||
|
||||
// implements a hidden markov model map matching algorithm
|
||||
template <> class MapMatching<algorithm::CH> final : public BasicRouting<algorithm::CH>
|
||||
{
|
||||
using super = BasicRouting<algorithm::CH>;
|
||||
using FacadeT = datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH>;
|
||||
using QueryHeap = SearchEngineData::QueryHeap;
|
||||
SearchEngineData &engine_working_data;
|
||||
map_matching::EmissionLogProbability default_emission_log_probability;
|
||||
map_matching::TransitionLogProbability transition_log_probability;
|
||||
map_matching::MatchingConfidence confidence;
|
||||
extractor::ProfileProperties m_profile_properties;
|
||||
|
||||
unsigned GetMedianSampleTime(const std::vector<unsigned> ×tamps) const;
|
||||
|
||||
public:
|
||||
MapMatching(SearchEngineData &engine_working_data)
|
||||
: engine_working_data(engine_working_data),
|
||||
default_emission_log_probability(DEFAULT_GPS_PRECISION),
|
||||
transition_log_probability(MATCHING_BETA)
|
||||
{
|
||||
}
|
||||
|
||||
SubMatchingList
|
||||
operator()(const FacadeT &facade,
|
||||
SubMatchingList
|
||||
mapMatching(SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const CandidateLists &candidates_list,
|
||||
const std::vector<util::Coordinate> &trace_coordinates,
|
||||
const std::vector<unsigned> &trace_timestamps,
|
||||
const std::vector<boost::optional<double>> &trace_gps_precision) const;
|
||||
};
|
||||
const std::vector<boost::optional<double>> &trace_gps_precision);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5,7 +5,6 @@
|
||||
|
||||
#include "engine/algorithm.hpp"
|
||||
#include "engine/datafacade/contiguous_internalmem_datafacade.hpp"
|
||||
#include "engine/edge_unpacker.hpp"
|
||||
#include "engine/internal_route_result.hpp"
|
||||
#include "engine/search_engine_data.hpp"
|
||||
|
||||
@ -35,33 +34,22 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
template <typename AlgorithmT> class BasicRouting;
|
||||
/*
|
||||
min_edge_offset is needed in case we use multiple
|
||||
nodes as start/target nodes with different (even negative) offsets.
|
||||
In that case the termination criterion is not correct
|
||||
anymore.
|
||||
|
||||
// TODO: There is no reason these functions are contained in a class other then for namespace
|
||||
// purposes. This should be a namespace with free functions.
|
||||
template <> class BasicRouting<algorithm::CH>
|
||||
{
|
||||
protected:
|
||||
using FacadeT = datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH>;
|
||||
using EdgeData = typename FacadeT::EdgeData;
|
||||
Example:
|
||||
forward heap: a(-100), b(0),
|
||||
reverse heap: c(0), d(100)
|
||||
|
||||
public:
|
||||
/*
|
||||
min_edge_offset is needed in case we use multiple
|
||||
nodes as start/target nodes with different (even negative) offsets.
|
||||
In that case the termination criterion is not correct
|
||||
anymore.
|
||||
|
||||
Example:
|
||||
forward heap: a(-100), b(0),
|
||||
reverse heap: c(0), d(100)
|
||||
|
||||
a --- d
|
||||
a --- d
|
||||
\ /
|
||||
/ \
|
||||
b --- c
|
||||
b --- c
|
||||
|
||||
This is equivalent to running a bi-directional Dijkstra on the following graph:
|
||||
This is equivalent to running a bi-directional Dijkstra on the following graph:
|
||||
|
||||
a --- d
|
||||
/ \ / \
|
||||
@ -69,13 +57,13 @@ template <> class BasicRouting<algorithm::CH>
|
||||
\ / \ /
|
||||
b --- c
|
||||
|
||||
The graph is constructed by inserting nodes y and z that are connected to the initial nodes
|
||||
using edges (y, a) with weight -100, (y, b) with weight 0 and,
|
||||
(d, z) with weight 100, (c, z) with weight 0 corresponding.
|
||||
Since we are dealing with a graph that contains _negative_ edges,
|
||||
we need to add an offset to the termination criterion.
|
||||
*/
|
||||
void RoutingStep(const FacadeT &facade,
|
||||
The graph is constructed by inserting nodes y and z that are connected to the initial nodes
|
||||
using edges (y, a) with weight -100, (y, b) with weight 0 and,
|
||||
(d, z) with weight 100, (c, z) with weight 0 corresponding.
|
||||
Since we are dealing with a graph that contains _negative_ edges,
|
||||
we need to add an offset to the termination criterion.
|
||||
*/
|
||||
void routingStep(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
NodeID &middle_node_id,
|
||||
@ -84,10 +72,13 @@ template <> class BasicRouting<algorithm::CH>
|
||||
const bool forward_direction,
|
||||
const bool stalling,
|
||||
const bool force_loop_forward,
|
||||
const bool force_loop_reverse) const;
|
||||
const bool force_loop_reverse);
|
||||
|
||||
template <bool UseDuration> EdgeWeight GetLoopWeight(const FacadeT &facade, NodeID node) const
|
||||
{
|
||||
template <bool UseDuration>
|
||||
EdgeWeight
|
||||
getLoopWeight(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
NodeID node)
|
||||
{
|
||||
EdgeWeight loop_weight = UseDuration ? MAXIMAL_EDGE_DURATION : INVALID_EDGE_WEIGHT;
|
||||
for (auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
@ -103,15 +94,100 @@ template <> class BasicRouting<algorithm::CH>
|
||||
}
|
||||
}
|
||||
return loop_weight;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a sequence of connected `NodeID`s in the CH graph, performs a depth-first unpacking of
|
||||
* the shortcut
|
||||
* edges. For every "original" edge found, it calls the `callback` with the two NodeIDs for the
|
||||
* edge, and the EdgeData
|
||||
* for that edge.
|
||||
*
|
||||
* The primary purpose of this unpacking is to expand a path through the CH into the original
|
||||
* route through the
|
||||
* pre-contracted graph.
|
||||
*
|
||||
* Because of the depth-first-search, the `callback` will effectively be called in sequence for
|
||||
* the original route
|
||||
* from beginning to end.
|
||||
*
|
||||
* @param packed_path_begin iterator pointing to the start of the NodeID list
|
||||
* @param packed_path_end iterator pointing to the end of the NodeID list
|
||||
* @param callback void(const std::pair<NodeID, NodeID>, const EdgeData &) called for each
|
||||
* original edge found.
|
||||
*/
|
||||
template <typename BidirectionalIterator, typename Callback>
|
||||
void unpackPath(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
BidirectionalIterator packed_path_begin,
|
||||
BidirectionalIterator packed_path_end,
|
||||
Callback &&callback)
|
||||
{
|
||||
// make sure we have at least something to unpack
|
||||
if (packed_path_begin == packed_path_end)
|
||||
return;
|
||||
|
||||
std::stack<std::pair<NodeID, NodeID>> recursion_stack;
|
||||
|
||||
// We have to push the path in reverse order onto the stack because it's LIFO.
|
||||
for (auto current = std::prev(packed_path_end); current != packed_path_begin;
|
||||
current = std::prev(current))
|
||||
{
|
||||
recursion_stack.emplace(*std::prev(current), *current);
|
||||
}
|
||||
|
||||
template <typename RandomIter>
|
||||
void UnpackPath(const FacadeT &facade,
|
||||
std::pair<NodeID, NodeID> edge;
|
||||
while (!recursion_stack.empty())
|
||||
{
|
||||
edge = recursion_stack.top();
|
||||
recursion_stack.pop();
|
||||
|
||||
// Look for an edge on the forward CH graph (.forward)
|
||||
EdgeID smaller_edge_id = facade.FindSmallestEdge(
|
||||
edge.first, edge.second, [](const auto &data) { return data.forward; });
|
||||
|
||||
// If we didn't find one there, the we might be looking at a part of the path that
|
||||
// was found using the backward search. Here, we flip the node order (.second, .first)
|
||||
// and only consider edges with the `.backward` flag.
|
||||
if (SPECIAL_EDGEID == smaller_edge_id)
|
||||
{
|
||||
smaller_edge_id = facade.FindSmallestEdge(
|
||||
edge.second, edge.first, [](const auto &data) { return data.backward; });
|
||||
}
|
||||
|
||||
// If we didn't find anything *still*, then something is broken and someone has
|
||||
// called this function with bad values.
|
||||
BOOST_ASSERT_MSG(smaller_edge_id != SPECIAL_EDGEID, "Invalid smaller edge ID");
|
||||
|
||||
const auto &data = facade.GetEdgeData(smaller_edge_id);
|
||||
BOOST_ASSERT_MSG(data.weight != std::numeric_limits<EdgeWeight>::max(),
|
||||
"edge weight invalid");
|
||||
|
||||
// If the edge is a shortcut, we need to add the two halfs to the stack.
|
||||
if (data.shortcut)
|
||||
{ // unpack
|
||||
const NodeID middle_node_id = data.id;
|
||||
// Note the order here - we're adding these to a stack, so we
|
||||
// want the first->middle to get visited before middle->second
|
||||
recursion_stack.emplace(middle_node_id, edge.second);
|
||||
recursion_stack.emplace(edge.first, middle_node_id);
|
||||
}
|
||||
else
|
||||
{
|
||||
// We found an original edge, call our callback.
|
||||
std::forward<Callback>(callback)(edge, data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Should work both for CH and not CH if the unpackPath function above is implemented a proper
|
||||
// implementation.
|
||||
template <typename RandomIter, typename FacadeT>
|
||||
void unpackPath(const FacadeT &facade,
|
||||
RandomIter packed_path_begin,
|
||||
RandomIter packed_path_end,
|
||||
const PhantomNodes &phantom_node_pair,
|
||||
std::vector<PathData> &unpacked_path) const
|
||||
{
|
||||
std::vector<PathData> &unpacked_path)
|
||||
{
|
||||
BOOST_ASSERT(std::distance(packed_path_begin, packed_path_end) > 0);
|
||||
|
||||
const bool start_traversed_in_reverse =
|
||||
@ -125,17 +201,16 @@ template <> class BasicRouting<algorithm::CH>
|
||||
*std::prev(packed_path_end) == phantom_node_pair.target_phantom.forward_segment_id.id ||
|
||||
*std::prev(packed_path_end) == phantom_node_pair.target_phantom.reverse_segment_id.id);
|
||||
|
||||
UnpackCHPath(
|
||||
unpackPath(
|
||||
facade,
|
||||
packed_path_begin,
|
||||
packed_path_end,
|
||||
[this,
|
||||
&facade,
|
||||
[&facade,
|
||||
&unpacked_path,
|
||||
&phantom_node_pair,
|
||||
&start_traversed_in_reverse,
|
||||
&target_traversed_in_reverse](std::pair<NodeID, NodeID> & /* edge */,
|
||||
const EdgeData &edge_data) {
|
||||
const auto &edge_data) {
|
||||
|
||||
BOOST_ASSERT_MSG(!edge_data.shortcut, "original edge flagged as shortcut");
|
||||
const auto name_index = facade.GetNameIndexFromEdgeID(edge_data.id);
|
||||
@ -184,8 +259,7 @@ template <> class BasicRouting<algorithm::CH>
|
||||
BOOST_ASSERT(start_index < end_index);
|
||||
for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx)
|
||||
{
|
||||
unpacked_path.push_back(
|
||||
PathData{id_vector[segment_idx + 1],
|
||||
unpacked_path.push_back(PathData{id_vector[segment_idx + 1],
|
||||
name_index,
|
||||
weight_vector[segment_idx],
|
||||
duration_vector[segment_idx],
|
||||
@ -236,8 +310,8 @@ template <> class BasicRouting<algorithm::CH>
|
||||
|
||||
if (is_local_path)
|
||||
{
|
||||
start_index = weight_vector.size() -
|
||||
phantom_node_pair.source_phantom.fwd_segment_position - 1;
|
||||
start_index =
|
||||
weight_vector.size() - phantom_node_pair.source_phantom.fwd_segment_position - 1;
|
||||
}
|
||||
end_index =
|
||||
weight_vector.size() - phantom_node_pair.target_phantom.fwd_segment_position - 1;
|
||||
@ -334,60 +408,60 @@ template <> class BasicRouting<algorithm::CH>
|
||||
}
|
||||
BOOST_ASSERT(!unpacked_path.empty());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
/**
|
||||
* Unpacks a single edge (NodeID->NodeID) from the CH graph down to it's original non-shortcut
|
||||
* route.
|
||||
* @param from the node the CH edge starts at
|
||||
* @param to the node the CH edge finishes at
|
||||
* @param unpacked_path the sequence of original NodeIDs that make up the expanded CH edge
|
||||
*/
|
||||
void UnpackEdge(const FacadeT &facade,
|
||||
void unpackEdge(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const NodeID from,
|
||||
const NodeID to,
|
||||
std::vector<NodeID> &unpacked_path) const;
|
||||
std::vector<NodeID> &unpacked_path);
|
||||
|
||||
void RetrievePackedPathFromHeap(const SearchEngineData::QueryHeap &forward_heap,
|
||||
void retrievePackedPathFromHeap(const SearchEngineData::QueryHeap &forward_heap,
|
||||
const SearchEngineData::QueryHeap &reverse_heap,
|
||||
const NodeID middle_node_id,
|
||||
std::vector<NodeID> &packed_path) const;
|
||||
std::vector<NodeID> &packed_path);
|
||||
|
||||
void RetrievePackedPathFromSingleHeap(const SearchEngineData::QueryHeap &search_heap,
|
||||
void retrievePackedPathFromSingleHeap(const SearchEngineData::QueryHeap &search_heap,
|
||||
const NodeID middle_node_id,
|
||||
std::vector<NodeID> &packed_path) const;
|
||||
std::vector<NodeID> &packed_path);
|
||||
|
||||
// assumes that heaps are already setup correctly.
|
||||
// ATTENTION: This only works if no additional offset is supplied next to the Phantom Node
|
||||
// Offsets.
|
||||
// In case additional offsets are supplied, you might have to force a loop first.
|
||||
// A forced loop might be necessary, if source and target are on the same segment.
|
||||
// If this is the case and the offsets of the respective direction are larger for the source
|
||||
// than the target
|
||||
// then a force loop is required (e.g. source_phantom.forward_segment_id ==
|
||||
// target_phantom.forward_segment_id
|
||||
// && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
|
||||
// requires
|
||||
// a force loop, if the heaps have been initialized with positive offsets.
|
||||
void Search(const FacadeT &facade,
|
||||
// assumes that heaps are already setup correctly.
|
||||
// ATTENTION: This only works if no additional offset is supplied next to the Phantom Node
|
||||
// Offsets.
|
||||
// In case additional offsets are supplied, you might have to force a loop first.
|
||||
// A forced loop might be necessary, if source and target are on the same segment.
|
||||
// If this is the case and the offsets of the respective direction are larger for the source
|
||||
// than the target
|
||||
// then a force loop is required (e.g. source_phantom.forward_segment_id ==
|
||||
// target_phantom.forward_segment_id
|
||||
// && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
|
||||
// requires
|
||||
// a force loop, if the heaps have been initialized with positive offsets.
|
||||
void search(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
std::int32_t &weight,
|
||||
std::vector<NodeID> &packed_leg,
|
||||
const bool force_loop_forward,
|
||||
const bool force_loop_reverse,
|
||||
const int duration_upper_bound = INVALID_EDGE_WEIGHT) const;
|
||||
const int duration_upper_bound = INVALID_EDGE_WEIGHT);
|
||||
|
||||
// assumes that heaps are already setup correctly.
|
||||
// A forced loop might be necessary, if source and target are on the same segment.
|
||||
// If this is the case and the offsets of the respective direction are larger for the source
|
||||
// than the target
|
||||
// then a force loop is required (e.g. source_phantom.forward_segment_id ==
|
||||
// target_phantom.forward_segment_id
|
||||
// && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
|
||||
// requires
|
||||
// a force loop, if the heaps have been initialized with positive offsets.
|
||||
void SearchWithCore(const FacadeT &facade,
|
||||
// assumes that heaps are already setup correctly.
|
||||
// A forced loop might be necessary, if source and target are on the same segment.
|
||||
// If this is the case and the offsets of the respective direction are larger for the source
|
||||
// than the target
|
||||
// then a force loop is required (e.g. source_phantom.forward_segment_id ==
|
||||
// target_phantom.forward_segment_id
|
||||
// && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
|
||||
// requires
|
||||
// a force loop, if the heaps have been initialized with positive offsets.
|
||||
void searchWithCore(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
SearchEngineData::QueryHeap &forward_core_heap,
|
||||
@ -396,41 +470,40 @@ template <> class BasicRouting<algorithm::CH>
|
||||
std::vector<NodeID> &packed_leg,
|
||||
const bool force_loop_forward,
|
||||
const bool force_loop_reverse,
|
||||
int duration_upper_bound = INVALID_EDGE_WEIGHT) const;
|
||||
int duration_upper_bound = INVALID_EDGE_WEIGHT);
|
||||
|
||||
bool NeedsLoopForward(const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom) const;
|
||||
bool needsLoopForward(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
|
||||
|
||||
bool NeedsLoopBackwards(const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom) const;
|
||||
bool needsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
|
||||
|
||||
double GetPathDistance(const FacadeT &facade,
|
||||
double getPathDistance(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<NodeID> &packed_path,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom) const;
|
||||
const PhantomNode &target_phantom);
|
||||
|
||||
// Requires the heaps for be empty
|
||||
// If heaps should be adjusted to be initialized outside of this function,
|
||||
// the addition of force_loop parameters might be required
|
||||
double GetNetworkDistanceWithCore(const FacadeT &facade,
|
||||
// Requires the heaps for be empty
|
||||
// If heaps should be adjusted to be initialized outside of this function,
|
||||
// the addition of force_loop parameters might be required
|
||||
double getNetworkDistanceWithCore(
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
SearchEngineData::QueryHeap &forward_core_heap,
|
||||
SearchEngineData::QueryHeap &reverse_core_heap,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom,
|
||||
int duration_upper_bound = INVALID_EDGE_WEIGHT) const;
|
||||
int duration_upper_bound = INVALID_EDGE_WEIGHT);
|
||||
|
||||
// Requires the heaps for be empty
|
||||
// If heaps should be adjusted to be initialized outside of this function,
|
||||
// the addition of force_loop parameters might be required
|
||||
double GetNetworkDistance(const FacadeT &facade,
|
||||
// Requires the heaps for be empty
|
||||
// If heaps should be adjusted to be initialized outside of this function,
|
||||
// the addition of force_loop parameters might be required
|
||||
double
|
||||
getNetworkDistance(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom,
|
||||
int duration_upper_bound = INVALID_EDGE_WEIGHT) const;
|
||||
};
|
||||
int duration_upper_bound = INVALID_EDGE_WEIGHT);
|
||||
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
|
@ -4,13 +4,8 @@
|
||||
#include "engine/algorithm.hpp"
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
#include "engine/search_engine_data.hpp"
|
||||
#include "util/integer_range.hpp"
|
||||
#include "util/typedefs.hpp"
|
||||
|
||||
#include <boost/assert.hpp>
|
||||
#include <boost/optional.hpp>
|
||||
#include <memory>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace engine
|
||||
@ -18,75 +13,12 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
template <typename AlgorithmT> class ShortestPathRouting;
|
||||
|
||||
template <> class ShortestPathRouting<algorithm::CH> final : public BasicRouting<algorithm::CH>
|
||||
{
|
||||
using super = BasicRouting<algorithm::CH>;
|
||||
using FacadeT = datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH>;
|
||||
using QueryHeap = SearchEngineData::QueryHeap;
|
||||
SearchEngineData &engine_working_data;
|
||||
const static constexpr bool DO_NOT_FORCE_LOOP = false;
|
||||
|
||||
public:
|
||||
ShortestPathRouting(SearchEngineData &engine_working_data)
|
||||
: engine_working_data(engine_working_data)
|
||||
{
|
||||
}
|
||||
|
||||
~ShortestPathRouting() {}
|
||||
|
||||
// allows a uturn at the target_phantom
|
||||
// searches source forward/reverse -> target forward/reverse
|
||||
void SearchWithUTurn(const FacadeT &facade,
|
||||
QueryHeap &forward_heap,
|
||||
QueryHeap &reverse_heap,
|
||||
QueryHeap &forward_core_heap,
|
||||
QueryHeap &reverse_core_heap,
|
||||
const bool search_from_forward_node,
|
||||
const bool search_from_reverse_node,
|
||||
const bool search_to_forward_node,
|
||||
const bool search_to_reverse_node,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom,
|
||||
const int total_weight_to_forward,
|
||||
const int total_weight_to_reverse,
|
||||
int &new_total_weight,
|
||||
std::vector<NodeID> &leg_packed_path) const;
|
||||
|
||||
// searches shortest path between:
|
||||
// source forward/reverse -> target forward
|
||||
// source forward/reverse -> target reverse
|
||||
void Search(const FacadeT &facade,
|
||||
QueryHeap &forward_heap,
|
||||
QueryHeap &reverse_heap,
|
||||
QueryHeap &forward_core_heap,
|
||||
QueryHeap &reverse_core_heap,
|
||||
const bool search_from_forward_node,
|
||||
const bool search_from_reverse_node,
|
||||
const bool search_to_forward_node,
|
||||
const bool search_to_reverse_node,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom,
|
||||
const int total_weight_to_forward,
|
||||
const int total_weight_to_reverse,
|
||||
int &new_total_weight_to_forward,
|
||||
int &new_total_weight_to_reverse,
|
||||
std::vector<NodeID> &leg_packed_path_forward,
|
||||
std::vector<NodeID> &leg_packed_path_reverse) const;
|
||||
|
||||
void UnpackLegs(const FacadeT &facade,
|
||||
InternalRouteResult
|
||||
shortestPathSearch(SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector,
|
||||
const std::vector<NodeID> &total_packed_path,
|
||||
const std::vector<std::size_t> &packed_leg_begin,
|
||||
const int shortest_path_length,
|
||||
InternalRouteResult &raw_route_data) const;
|
||||
const boost::optional<bool> continue_straight_at_waypoint);
|
||||
|
||||
void operator()(const FacadeT &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector,
|
||||
const boost::optional<bool> continue_straight_at_waypoint,
|
||||
InternalRouteResult &raw_route_data) const;
|
||||
};
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
} // namespace osrm
|
||||
|
@ -1,12 +1,14 @@
|
||||
#ifndef OSRM_ENGINE_ROUTING_ALGORITHMS_TILE_TURNS_HPP
|
||||
#define OSRM_ENGINE_ROUTING_ALGORITHMS_TILE_TURNS_HPP
|
||||
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include "engine/algorithm.hpp"
|
||||
#include "engine/search_engine_data.hpp"
|
||||
#include "engine/datafacade/contiguous_internalmem_datafacade.hpp"
|
||||
|
||||
#include "util/coordinate.hpp"
|
||||
#include "util/typedefs.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace engine
|
||||
@ -14,8 +16,6 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
template <typename AlgorithmT> class TileTurns;
|
||||
|
||||
// Used to accumulate all the information we want in the tile about a turn.
|
||||
struct TurnData final
|
||||
{
|
||||
@ -25,19 +25,12 @@ struct TurnData final
|
||||
const int weight;
|
||||
};
|
||||
|
||||
/// This class is used to extract turn information for the tile plugin from a CH graph
|
||||
template <> class TileTurns<algorithm::CH> final : public BasicRouting<algorithm::CH>
|
||||
{
|
||||
using super = BasicRouting<algorithm::CH>;
|
||||
using FacadeT = datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH>;
|
||||
using RTreeLeaf = datafacade::BaseDataFacade::RTreeLeaf;
|
||||
|
||||
using RTreeLeaf = datafacade::BaseDataFacade::RTreeLeaf;
|
||||
|
||||
public:
|
||||
std::vector<TurnData> operator()(const FacadeT &facade,
|
||||
std::vector<TurnData>
|
||||
getTileTurns(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<RTreeLeaf> &edges,
|
||||
const std::vector<std::size_t> &sorted_edge_indexes) const;
|
||||
};
|
||||
const std::vector<std::size_t> &sorted_edge_indexes);
|
||||
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
|
@ -208,8 +208,8 @@ Status MatchPlugin::HandleRequest(const datafacade::ContiguousInternalMemoryData
|
||||
// force uturns to be on, since we split the phantom nodes anyway and only have
|
||||
// bi-directional
|
||||
// phantom nodes for possible uturns
|
||||
algorithms.ShortestRouting(
|
||||
sub_routes[index].segment_end_coordinates, {false}, sub_routes[index]);
|
||||
sub_routes[index] =
|
||||
algorithms.ShortestRouting(sub_routes[index].segment_end_coordinates, {false});
|
||||
BOOST_ASSERT(sub_routes[index].shortest_path_length != INVALID_EDGE_WEIGHT);
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include "engine/plugins/tile.hpp"
|
||||
#include "engine/edge_unpacker.hpp"
|
||||
#include "engine/plugins/plugin_base.hpp"
|
||||
|
||||
#include "util/coordinate_calculation.hpp"
|
||||
|
@ -85,7 +85,7 @@ InternalRouteResult TripPlugin::ComputeRoute(const RoutingAlgorithmsInterface &a
|
||||
BOOST_ASSERT(min_route.segment_end_coordinates.size() == trip.size() - 1);
|
||||
}
|
||||
|
||||
algorithms.ShortestRouting(min_route.segment_end_coordinates, {false}, min_route);
|
||||
min_route = algorithms.ShortestRouting(min_route.segment_end_coordinates, {false});
|
||||
BOOST_ASSERT_MSG(min_route.shortest_path_length < INVALID_EDGE_WEIGHT, "unroutable route");
|
||||
return min_route;
|
||||
}
|
||||
|
@ -89,17 +89,17 @@ ViaRoutePlugin::HandleRequest(const datafacade::ContiguousInternalMemoryDataFaca
|
||||
{
|
||||
if (route_parameters.alternatives && algorithms.HasAlternativeRouting())
|
||||
{
|
||||
algorithms.AlternativeRouting(raw_route.segment_end_coordinates.front(), raw_route);
|
||||
raw_route = algorithms.AlternativeRouting(raw_route.segment_end_coordinates.front());
|
||||
}
|
||||
else
|
||||
{
|
||||
algorithms.DirectShortestPathRouting(raw_route.segment_end_coordinates, raw_route);
|
||||
raw_route = algorithms.DirectShortestPathRouting(raw_route.segment_end_coordinates);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
algorithms.ShortestRouting(
|
||||
raw_route.segment_end_coordinates, route_parameters.continue_straight, raw_route);
|
||||
raw_route = algorithms.ShortestRouting(raw_route.segment_end_coordinates,
|
||||
route_parameters.continue_straight);
|
||||
}
|
||||
|
||||
// we can only know this after the fact, different SCC ids still
|
||||
|
@ -1,4 +1,17 @@
|
||||
#include "engine/routing_algorithms/alternative_path.hpp"
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include "util/integer_range.hpp"
|
||||
|
||||
#include <boost/assert.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
@ -7,335 +20,131 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
void AlternativeRouting<algorithm::CH>::operator()(const FacadeT &facade,
|
||||
const PhantomNodes &phantom_node_pair,
|
||||
InternalRouteResult &raw_route_data)
|
||||
namespace
|
||||
{
|
||||
std::vector<NodeID> alternative_path;
|
||||
std::vector<NodeID> via_node_candidate_list;
|
||||
std::vector<SearchSpaceEdge> forward_search_space;
|
||||
std::vector<SearchSpaceEdge> reverse_search_space;
|
||||
const double constexpr VIAPATH_ALPHA = 0.10;
|
||||
const double constexpr VIAPATH_EPSILON = 0.15; // alternative at most 15% longer
|
||||
const double constexpr VIAPATH_GAMMA = 0.75; // alternative shares at most 75% with the shortest.
|
||||
|
||||
// Init queues, semi-expensive because access to TSS invokes a sys-call
|
||||
engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
engine_working_data.InitializeOrClearSecondThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
engine_working_data.InitializeOrClearThirdThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
using QueryHeap = SearchEngineData::QueryHeap;
|
||||
using SearchSpaceEdge = std::pair<NodeID, NodeID>;
|
||||
|
||||
QueryHeap &forward_heap1 = *(engine_working_data.forward_heap_1);
|
||||
QueryHeap &reverse_heap1 = *(engine_working_data.reverse_heap_1);
|
||||
QueryHeap &forward_heap2 = *(engine_working_data.forward_heap_2);
|
||||
QueryHeap &reverse_heap2 = *(engine_working_data.reverse_heap_2);
|
||||
|
||||
EdgeWeight upper_bound_to_shortest_path_weight = INVALID_EDGE_WEIGHT;
|
||||
NodeID middle_node = SPECIAL_NODEID;
|
||||
const EdgeWeight min_edge_offset =
|
||||
std::min(phantom_node_pair.source_phantom.forward_segment_id.enabled
|
||||
? -phantom_node_pair.source_phantom.GetForwardWeightPlusOffset()
|
||||
: 0,
|
||||
phantom_node_pair.source_phantom.reverse_segment_id.enabled
|
||||
? -phantom_node_pair.source_phantom.GetReverseWeightPlusOffset()
|
||||
: 0);
|
||||
|
||||
if (phantom_node_pair.source_phantom.forward_segment_id.enabled)
|
||||
struct RankedCandidateNode
|
||||
{
|
||||
RankedCandidateNode(const NodeID node, const int length, const int sharing)
|
||||
: node(node), length(length), sharing(sharing)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.source_phantom.forward_segment_id.id != SPECIAL_SEGMENTID);
|
||||
forward_heap1.Insert(phantom_node_pair.source_phantom.forward_segment_id.id,
|
||||
-phantom_node_pair.source_phantom.GetForwardWeightPlusOffset(),
|
||||
phantom_node_pair.source_phantom.forward_segment_id.id);
|
||||
}
|
||||
if (phantom_node_pair.source_phantom.reverse_segment_id.enabled)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.source_phantom.reverse_segment_id.id != SPECIAL_SEGMENTID);
|
||||
forward_heap1.Insert(phantom_node_pair.source_phantom.reverse_segment_id.id,
|
||||
-phantom_node_pair.source_phantom.GetReverseWeightPlusOffset(),
|
||||
phantom_node_pair.source_phantom.reverse_segment_id.id);
|
||||
}
|
||||
|
||||
if (phantom_node_pair.target_phantom.forward_segment_id.enabled)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.target_phantom.forward_segment_id.id != SPECIAL_SEGMENTID);
|
||||
reverse_heap1.Insert(phantom_node_pair.target_phantom.forward_segment_id.id,
|
||||
phantom_node_pair.target_phantom.GetForwardWeightPlusOffset(),
|
||||
phantom_node_pair.target_phantom.forward_segment_id.id);
|
||||
}
|
||||
if (phantom_node_pair.target_phantom.reverse_segment_id.enabled)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.target_phantom.reverse_segment_id.id != SPECIAL_SEGMENTID);
|
||||
reverse_heap1.Insert(phantom_node_pair.target_phantom.reverse_segment_id.id,
|
||||
phantom_node_pair.target_phantom.GetReverseWeightPlusOffset(),
|
||||
phantom_node_pair.target_phantom.reverse_segment_id.id);
|
||||
}
|
||||
NodeID node;
|
||||
int length;
|
||||
int sharing;
|
||||
|
||||
// search from s and t till new_min/(1+epsilon) > length_of_shortest_path
|
||||
while (0 < (forward_heap1.Size() + reverse_heap1.Size()))
|
||||
bool operator<(const RankedCandidateNode &other) const
|
||||
{
|
||||
if (0 < forward_heap1.Size())
|
||||
{
|
||||
AlternativeRoutingStep<true>(facade,
|
||||
forward_heap1,
|
||||
reverse_heap1,
|
||||
&middle_node,
|
||||
&upper_bound_to_shortest_path_weight,
|
||||
via_node_candidate_list,
|
||||
forward_search_space,
|
||||
min_edge_offset);
|
||||
}
|
||||
if (0 < reverse_heap1.Size())
|
||||
{
|
||||
AlternativeRoutingStep<false>(facade,
|
||||
forward_heap1,
|
||||
reverse_heap1,
|
||||
&middle_node,
|
||||
&upper_bound_to_shortest_path_weight,
|
||||
via_node_candidate_list,
|
||||
reverse_search_space,
|
||||
min_edge_offset);
|
||||
}
|
||||
return (2 * length + sharing) < (2 * other.length + other.sharing);
|
||||
}
|
||||
};
|
||||
|
||||
if (INVALID_EDGE_WEIGHT == upper_bound_to_shortest_path_weight)
|
||||
// todo: reorder parameters
|
||||
template <bool is_forward_directed>
|
||||
void alternativeRoutingStep(
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
QueryHeap &heap1,
|
||||
QueryHeap &heap2,
|
||||
NodeID *middle_node,
|
||||
EdgeWeight *upper_bound_to_shortest_path_weight,
|
||||
std::vector<NodeID> &search_space_intersection,
|
||||
std::vector<SearchSpaceEdge> &search_space,
|
||||
const EdgeWeight min_edge_offset)
|
||||
{
|
||||
QueryHeap &forward_heap = (is_forward_directed ? heap1 : heap2);
|
||||
QueryHeap &reverse_heap = (is_forward_directed ? heap2 : heap1);
|
||||
|
||||
const NodeID node = forward_heap.DeleteMin();
|
||||
const EdgeWeight weight = forward_heap.GetKey(node);
|
||||
|
||||
const auto scaled_weight =
|
||||
static_cast<EdgeWeight>((weight + min_edge_offset) / (1. + VIAPATH_EPSILON));
|
||||
if ((INVALID_EDGE_WEIGHT != *upper_bound_to_shortest_path_weight) &&
|
||||
(scaled_weight > *upper_bound_to_shortest_path_weight))
|
||||
{
|
||||
forward_heap.DeleteAll();
|
||||
return;
|
||||
}
|
||||
|
||||
std::sort(begin(via_node_candidate_list), end(via_node_candidate_list));
|
||||
auto unique_end = std::unique(begin(via_node_candidate_list), end(via_node_candidate_list));
|
||||
via_node_candidate_list.resize(unique_end - begin(via_node_candidate_list));
|
||||
search_space.emplace_back(forward_heap.GetData(node).parent, node);
|
||||
|
||||
std::vector<NodeID> packed_forward_path;
|
||||
std::vector<NodeID> packed_reverse_path;
|
||||
|
||||
const bool path_is_a_loop =
|
||||
upper_bound_to_shortest_path_weight !=
|
||||
forward_heap1.GetKey(middle_node) + reverse_heap1.GetKey(middle_node);
|
||||
if (path_is_a_loop)
|
||||
if (reverse_heap.WasInserted(node))
|
||||
{
|
||||
// Self Loop
|
||||
packed_forward_path.push_back(middle_node);
|
||||
packed_forward_path.push_back(middle_node);
|
||||
search_space_intersection.emplace_back(node);
|
||||
const EdgeWeight new_weight = reverse_heap.GetKey(node) + weight;
|
||||
if (new_weight < *upper_bound_to_shortest_path_weight)
|
||||
{
|
||||
if (new_weight >= 0)
|
||||
{
|
||||
*middle_node = node;
|
||||
*upper_bound_to_shortest_path_weight = new_weight;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
super::RetrievePackedPathFromSingleHeap(forward_heap1, middle_node, packed_forward_path);
|
||||
super::RetrievePackedPathFromSingleHeap(reverse_heap1, middle_node, packed_reverse_path);
|
||||
// check whether there is a loop present at the node
|
||||
const auto loop_weight = getLoopWeight<false>(facade, node);
|
||||
const EdgeWeight new_weight_with_loop = new_weight + loop_weight;
|
||||
if (loop_weight != INVALID_EDGE_WEIGHT &&
|
||||
new_weight_with_loop <= *upper_bound_to_shortest_path_weight)
|
||||
{
|
||||
*middle_node = node;
|
||||
*upper_bound_to_shortest_path_weight = loop_weight;
|
||||
}
|
||||
|
||||
// this set is is used as an indicator if a node is on the shortest path
|
||||
std::unordered_set<NodeID> nodes_in_path(packed_forward_path.size() +
|
||||
packed_reverse_path.size());
|
||||
nodes_in_path.insert(packed_forward_path.begin(), packed_forward_path.end());
|
||||
nodes_in_path.insert(middle_node);
|
||||
nodes_in_path.insert(packed_reverse_path.begin(), packed_reverse_path.end());
|
||||
|
||||
std::unordered_map<NodeID, int> approximated_forward_sharing;
|
||||
std::unordered_map<NodeID, int> approximated_reverse_sharing;
|
||||
|
||||
// sweep over search space, compute forward sharing for each current edge (u,v)
|
||||
for (const SearchSpaceEdge ¤t_edge : forward_search_space)
|
||||
{
|
||||
const NodeID u = current_edge.first;
|
||||
const NodeID v = current_edge.second;
|
||||
|
||||
if (nodes_in_path.find(v) != nodes_in_path.end())
|
||||
{
|
||||
// current_edge is on shortest path => sharing(v):=queue.GetKey(v);
|
||||
approximated_forward_sharing.emplace(v, forward_heap1.GetKey(v));
|
||||
}
|
||||
else
|
||||
{
|
||||
// current edge is not on shortest path. Check if we know a value for the other
|
||||
// endpoint
|
||||
const auto sharing_of_u_iterator = approximated_forward_sharing.find(u);
|
||||
if (sharing_of_u_iterator != approximated_forward_sharing.end())
|
||||
{
|
||||
approximated_forward_sharing.emplace(v, sharing_of_u_iterator->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sweep over search space, compute backward sharing
|
||||
for (const SearchSpaceEdge ¤t_edge : reverse_search_space)
|
||||
for (auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const NodeID u = current_edge.first;
|
||||
const NodeID v = current_edge.second;
|
||||
if (nodes_in_path.find(v) != nodes_in_path.end())
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
const bool edge_is_forward_directed = (is_forward_directed ? data.forward : data.backward);
|
||||
if (edge_is_forward_directed)
|
||||
{
|
||||
// current_edge is on shortest path => sharing(u):=queue.GetKey(u);
|
||||
approximated_reverse_sharing.emplace(v, reverse_heap1.GetKey(v));
|
||||
const NodeID to = facade.GetTarget(edge);
|
||||
const EdgeWeight edge_weight = data.weight;
|
||||
|
||||
BOOST_ASSERT(edge_weight > 0);
|
||||
const EdgeWeight to_weight = weight + edge_weight;
|
||||
|
||||
// New Node discovered -> Add to Heap + Node Info Storage
|
||||
if (!forward_heap.WasInserted(to))
|
||||
{
|
||||
forward_heap.Insert(to, to_weight, node);
|
||||
}
|
||||
else
|
||||
// Found a shorter Path -> Update weight
|
||||
else if (to_weight < forward_heap.GetKey(to))
|
||||
{
|
||||
// current edge is not on shortest path. Check if we know a value for the other
|
||||
// endpoint
|
||||
const auto sharing_of_u_iterator = approximated_reverse_sharing.find(u);
|
||||
if (sharing_of_u_iterator != approximated_reverse_sharing.end())
|
||||
{
|
||||
approximated_reverse_sharing.emplace(v, sharing_of_u_iterator->second);
|
||||
// new parent
|
||||
forward_heap.GetData(to).parent = node;
|
||||
// decreased weight
|
||||
forward_heap.DecreaseKey(to, to_weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// util::Log(logDEBUG) << "fwd_search_space size: " <<
|
||||
// forward_search_space.size() << ", marked " << approximated_forward_sharing.size() << "
|
||||
// nodes";
|
||||
// util::Log(logDEBUG) << "rev_search_space size: " <<
|
||||
// reverse_search_space.size() << ", marked " << approximated_reverse_sharing.size() << "
|
||||
// nodes";
|
||||
|
||||
std::vector<NodeID> preselected_node_list;
|
||||
for (const NodeID node : via_node_candidate_list)
|
||||
{
|
||||
if (node == middle_node)
|
||||
continue;
|
||||
const auto fwd_iterator = approximated_forward_sharing.find(node);
|
||||
const int fwd_sharing =
|
||||
(fwd_iterator != approximated_forward_sharing.end()) ? fwd_iterator->second : 0;
|
||||
const auto rev_iterator = approximated_reverse_sharing.find(node);
|
||||
const int rev_sharing =
|
||||
(rev_iterator != approximated_reverse_sharing.end()) ? rev_iterator->second : 0;
|
||||
|
||||
const int approximated_sharing = fwd_sharing + rev_sharing;
|
||||
const int approximated_length = forward_heap1.GetKey(node) + reverse_heap1.GetKey(node);
|
||||
const bool length_passes =
|
||||
(approximated_length < upper_bound_to_shortest_path_weight * (1 + VIAPATH_EPSILON));
|
||||
const bool sharing_passes =
|
||||
(approximated_sharing <= upper_bound_to_shortest_path_weight * VIAPATH_GAMMA);
|
||||
const bool stretch_passes =
|
||||
(approximated_length - approximated_sharing) <
|
||||
((1. + VIAPATH_ALPHA) * (upper_bound_to_shortest_path_weight - approximated_sharing));
|
||||
|
||||
if (length_passes && sharing_passes && stretch_passes)
|
||||
{
|
||||
preselected_node_list.emplace_back(node);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<NodeID> &packed_shortest_path = packed_forward_path;
|
||||
if (!path_is_a_loop)
|
||||
{
|
||||
std::reverse(packed_shortest_path.begin(), packed_shortest_path.end());
|
||||
packed_shortest_path.emplace_back(middle_node);
|
||||
packed_shortest_path.insert(
|
||||
packed_shortest_path.end(), packed_reverse_path.begin(), packed_reverse_path.end());
|
||||
}
|
||||
std::vector<RankedCandidateNode> ranked_candidates_list;
|
||||
|
||||
// prioritizing via nodes for deep inspection
|
||||
for (const NodeID node : preselected_node_list)
|
||||
{
|
||||
int length_of_via_path = 0, sharing_of_via_path = 0;
|
||||
ComputeLengthAndSharingOfViaPath(facade,
|
||||
node,
|
||||
&length_of_via_path,
|
||||
&sharing_of_via_path,
|
||||
packed_shortest_path,
|
||||
min_edge_offset);
|
||||
const int maximum_allowed_sharing =
|
||||
static_cast<int>(upper_bound_to_shortest_path_weight * VIAPATH_GAMMA);
|
||||
if (sharing_of_via_path <= maximum_allowed_sharing &&
|
||||
length_of_via_path <= upper_bound_to_shortest_path_weight * (1 + VIAPATH_EPSILON))
|
||||
{
|
||||
ranked_candidates_list.emplace_back(node, length_of_via_path, sharing_of_via_path);
|
||||
}
|
||||
}
|
||||
std::sort(ranked_candidates_list.begin(), ranked_candidates_list.end());
|
||||
|
||||
NodeID selected_via_node = SPECIAL_NODEID;
|
||||
int length_of_via_path = INVALID_EDGE_WEIGHT;
|
||||
NodeID s_v_middle = SPECIAL_NODEID, v_t_middle = SPECIAL_NODEID;
|
||||
for (const RankedCandidateNode &candidate : ranked_candidates_list)
|
||||
{
|
||||
if (ViaNodeCandidatePassesTTest(facade,
|
||||
forward_heap1,
|
||||
reverse_heap1,
|
||||
forward_heap2,
|
||||
reverse_heap2,
|
||||
candidate,
|
||||
upper_bound_to_shortest_path_weight,
|
||||
&length_of_via_path,
|
||||
&s_v_middle,
|
||||
&v_t_middle,
|
||||
min_edge_offset))
|
||||
{
|
||||
// select first admissable
|
||||
selected_via_node = candidate.node;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Unpack shortest path and alternative, if they exist
|
||||
if (INVALID_EDGE_WEIGHT != upper_bound_to_shortest_path_weight)
|
||||
{
|
||||
BOOST_ASSERT(!packed_shortest_path.empty());
|
||||
raw_route_data.unpacked_path_segments.resize(1);
|
||||
raw_route_data.source_traversed_in_reverse.push_back(
|
||||
(packed_shortest_path.front() !=
|
||||
phantom_node_pair.source_phantom.forward_segment_id.id));
|
||||
raw_route_data.target_traversed_in_reverse.push_back((
|
||||
packed_shortest_path.back() != phantom_node_pair.target_phantom.forward_segment_id.id));
|
||||
|
||||
super::UnpackPath(facade,
|
||||
// -- packed input
|
||||
packed_shortest_path.begin(),
|
||||
packed_shortest_path.end(),
|
||||
// -- start of route
|
||||
phantom_node_pair,
|
||||
// -- unpacked output
|
||||
raw_route_data.unpacked_path_segments.front());
|
||||
raw_route_data.shortest_path_length = upper_bound_to_shortest_path_weight;
|
||||
}
|
||||
|
||||
if (SPECIAL_NODEID != selected_via_node)
|
||||
{
|
||||
std::vector<NodeID> packed_alternate_path;
|
||||
// retrieve alternate path
|
||||
RetrievePackedAlternatePath(forward_heap1,
|
||||
reverse_heap1,
|
||||
forward_heap2,
|
||||
reverse_heap2,
|
||||
s_v_middle,
|
||||
v_t_middle,
|
||||
packed_alternate_path);
|
||||
|
||||
raw_route_data.alt_source_traversed_in_reverse.push_back(
|
||||
(packed_alternate_path.front() !=
|
||||
phantom_node_pair.source_phantom.forward_segment_id.id));
|
||||
raw_route_data.alt_target_traversed_in_reverse.push_back(
|
||||
(packed_alternate_path.back() !=
|
||||
phantom_node_pair.target_phantom.forward_segment_id.id));
|
||||
|
||||
// unpack the alternate path
|
||||
super::UnpackPath(facade,
|
||||
packed_alternate_path.begin(),
|
||||
packed_alternate_path.end(),
|
||||
phantom_node_pair,
|
||||
raw_route_data.unpacked_alternative);
|
||||
|
||||
raw_route_data.alternative_path_length = length_of_via_path;
|
||||
}
|
||||
else
|
||||
{
|
||||
BOOST_ASSERT(raw_route_data.alternative_path_length == INVALID_EDGE_WEIGHT);
|
||||
}
|
||||
}
|
||||
|
||||
void AlternativeRouting<algorithm::CH>::RetrievePackedAlternatePath(
|
||||
const QueryHeap &forward_heap1,
|
||||
void retrievePackedAlternatePath(const QueryHeap &forward_heap1,
|
||||
const QueryHeap &reverse_heap1,
|
||||
const QueryHeap &forward_heap2,
|
||||
const QueryHeap &reverse_heap2,
|
||||
const NodeID s_v_middle,
|
||||
const NodeID v_t_middle,
|
||||
std::vector<NodeID> &packed_path) const
|
||||
std::vector<NodeID> &packed_path)
|
||||
{
|
||||
// fetch packed path [s,v)
|
||||
std::vector<NodeID> packed_v_t_path;
|
||||
super::RetrievePackedPathFromHeap(forward_heap1, reverse_heap2, s_v_middle, packed_path);
|
||||
retrievePackedPathFromHeap(forward_heap1, reverse_heap2, s_v_middle, packed_path);
|
||||
packed_path.pop_back(); // remove middle node. It's in both half-paths
|
||||
|
||||
// fetch patched path [v,t]
|
||||
super::RetrievePackedPathFromHeap(forward_heap2, reverse_heap1, v_t_middle, packed_v_t_path);
|
||||
retrievePackedPathFromHeap(forward_heap2, reverse_heap1, v_t_middle, packed_v_t_path);
|
||||
|
||||
packed_path.insert(packed_path.end(), packed_v_t_path.begin(), packed_v_t_path.end());
|
||||
}
|
||||
@ -344,8 +153,9 @@ void AlternativeRouting<algorithm::CH>::RetrievePackedAlternatePath(
|
||||
// compute and unpack <s,..,v> and <v,..,t> by exploring search spaces
|
||||
// from v and intersecting against queues. only half-searches have to be
|
||||
// done at this stage
|
||||
void AlternativeRouting<algorithm::CH>::ComputeLengthAndSharingOfViaPath(
|
||||
const FacadeT &facade,
|
||||
void computeLengthAndSharingOfViaPath(
|
||||
SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const NodeID via_node,
|
||||
int *real_length_of_via_path,
|
||||
int *sharing_of_via_path,
|
||||
@ -373,7 +183,7 @@ void AlternativeRouting<algorithm::CH>::ComputeLengthAndSharingOfViaPath(
|
||||
const bool constexpr DO_NOT_FORCE_LOOPS = false;
|
||||
while (!new_reverse_heap.Empty())
|
||||
{
|
||||
super::RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
new_reverse_heap,
|
||||
existing_forward_heap,
|
||||
s_v_middle,
|
||||
@ -390,7 +200,7 @@ void AlternativeRouting<algorithm::CH>::ComputeLengthAndSharingOfViaPath(
|
||||
new_forward_heap.Insert(via_node, 0, via_node);
|
||||
while (!new_forward_heap.Empty())
|
||||
{
|
||||
super::RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
new_forward_heap,
|
||||
existing_reverse_heap,
|
||||
v_t_middle,
|
||||
@ -409,9 +219,9 @@ void AlternativeRouting<algorithm::CH>::ComputeLengthAndSharingOfViaPath(
|
||||
}
|
||||
|
||||
// retrieve packed paths
|
||||
super::RetrievePackedPathFromHeap(
|
||||
retrievePackedPathFromHeap(
|
||||
existing_forward_heap, new_reverse_heap, s_v_middle, packed_s_v_path);
|
||||
super::RetrievePackedPathFromHeap(
|
||||
retrievePackedPathFromHeap(
|
||||
new_forward_heap, existing_reverse_heap, v_t_middle, packed_v_t_path);
|
||||
|
||||
// partial unpacking, compute sharing
|
||||
@ -431,11 +241,11 @@ void AlternativeRouting<algorithm::CH>::ComputeLengthAndSharingOfViaPath(
|
||||
{
|
||||
if (packed_s_v_path[current_node] == packed_shortest_path[current_node])
|
||||
{
|
||||
super::UnpackEdge(facade,
|
||||
unpackEdge(facade,
|
||||
packed_s_v_path[current_node],
|
||||
packed_s_v_path[current_node + 1],
|
||||
partially_unpacked_via_path);
|
||||
super::UnpackEdge(facade,
|
||||
unpackEdge(facade,
|
||||
packed_shortest_path[current_node],
|
||||
packed_shortest_path[current_node + 1],
|
||||
partially_unpacked_shortest_path);
|
||||
@ -477,11 +287,11 @@ void AlternativeRouting<algorithm::CH>::ComputeLengthAndSharingOfViaPath(
|
||||
{
|
||||
if (packed_v_t_path[via_path_index] == packed_shortest_path[shortest_path_index])
|
||||
{
|
||||
super::UnpackEdge(facade,
|
||||
unpackEdge(facade,
|
||||
packed_v_t_path[via_path_index - 1],
|
||||
packed_v_t_path[via_path_index],
|
||||
partially_unpacked_via_path);
|
||||
super::UnpackEdge(facade,
|
||||
unpackEdge(facade,
|
||||
packed_shortest_path[shortest_path_index - 1],
|
||||
packed_shortest_path[shortest_path_index],
|
||||
partially_unpacked_shortest_path);
|
||||
@ -514,8 +324,9 @@ void AlternativeRouting<algorithm::CH>::ComputeLengthAndSharingOfViaPath(
|
||||
}
|
||||
|
||||
// conduct T-Test
|
||||
bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
const FacadeT &facade,
|
||||
bool viaNodeCandidatePassesTTest(
|
||||
SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
QueryHeap &existing_forward_heap,
|
||||
QueryHeap &existing_reverse_heap,
|
||||
QueryHeap &new_forward_heap,
|
||||
@ -525,7 +336,7 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
int *length_of_via_path,
|
||||
NodeID *s_v_middle,
|
||||
NodeID *v_t_middle,
|
||||
const EdgeWeight min_edge_offset) const
|
||||
const EdgeWeight min_edge_offset)
|
||||
{
|
||||
new_forward_heap.Clear();
|
||||
new_reverse_heap.Clear();
|
||||
@ -540,7 +351,7 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
const bool constexpr DO_NOT_FORCE_LOOPS = false;
|
||||
while (new_reverse_heap.Size() > 0)
|
||||
{
|
||||
super::RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
new_reverse_heap,
|
||||
existing_forward_heap,
|
||||
*s_v_middle,
|
||||
@ -563,7 +374,7 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
new_forward_heap.Insert(candidate.node, 0, candidate.node);
|
||||
while (new_forward_heap.Size() > 0)
|
||||
{
|
||||
super::RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
new_forward_heap,
|
||||
existing_reverse_heap,
|
||||
*v_t_middle,
|
||||
@ -583,10 +394,10 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
*length_of_via_path = upper_bound_s_v_path_length + upper_bound_of_v_t_path_length;
|
||||
|
||||
// retrieve packed paths
|
||||
super::RetrievePackedPathFromHeap(
|
||||
retrievePackedPathFromHeap(
|
||||
existing_forward_heap, new_reverse_heap, *s_v_middle, packed_s_v_path);
|
||||
|
||||
super::RetrievePackedPathFromHeap(
|
||||
retrievePackedPathFromHeap(
|
||||
new_forward_heap, existing_reverse_heap, *v_t_middle, packed_v_t_path);
|
||||
|
||||
NodeID s_P = *s_v_middle, t_P = *v_t_middle;
|
||||
@ -632,7 +443,7 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
return false;
|
||||
}
|
||||
|
||||
const EdgeData ¤t_edge_data = facade.GetEdgeData(edge_in_via_path_id);
|
||||
const auto ¤t_edge_data = facade.GetEdgeData(edge_in_via_path_id);
|
||||
const bool current_edge_is_shortcut = current_edge_data.shortcut;
|
||||
if (current_edge_is_shortcut)
|
||||
{
|
||||
@ -694,7 +505,7 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
return false;
|
||||
}
|
||||
|
||||
const EdgeData ¤t_edge_data = facade.GetEdgeData(edge_in_via_path_id);
|
||||
const auto ¤t_edge_data = facade.GetEdgeData(edge_in_via_path_id);
|
||||
const bool IsViaEdgeShortCut = current_edge_data.shortcut;
|
||||
if (IsViaEdgeShortCut)
|
||||
{
|
||||
@ -738,7 +549,7 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
{
|
||||
if (!forward_heap3.Empty())
|
||||
{
|
||||
super::RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
forward_heap3,
|
||||
reverse_heap3,
|
||||
middle,
|
||||
@ -751,7 +562,7 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
}
|
||||
if (!reverse_heap3.Empty())
|
||||
{
|
||||
super::RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
reverse_heap3,
|
||||
forward_heap3,
|
||||
middle,
|
||||
@ -765,6 +576,319 @@ bool AlternativeRouting<algorithm::CH>::ViaNodeCandidatePassesTTest(
|
||||
}
|
||||
return (upper_bound <= t_test_path_length);
|
||||
}
|
||||
}
|
||||
|
||||
InternalRouteResult
|
||||
alternativePathSearch(SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const PhantomNodes &phantom_node_pair)
|
||||
{
|
||||
InternalRouteResult raw_route_data;
|
||||
std::vector<NodeID> alternative_path;
|
||||
std::vector<NodeID> via_node_candidate_list;
|
||||
std::vector<SearchSpaceEdge> forward_search_space;
|
||||
std::vector<SearchSpaceEdge> reverse_search_space;
|
||||
|
||||
// Init queues, semi-expensive because access to TSS invokes a sys-call
|
||||
engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
engine_working_data.InitializeOrClearSecondThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
engine_working_data.InitializeOrClearThirdThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
|
||||
QueryHeap &forward_heap1 = *(engine_working_data.forward_heap_1);
|
||||
QueryHeap &reverse_heap1 = *(engine_working_data.reverse_heap_1);
|
||||
QueryHeap &forward_heap2 = *(engine_working_data.forward_heap_2);
|
||||
QueryHeap &reverse_heap2 = *(engine_working_data.reverse_heap_2);
|
||||
|
||||
EdgeWeight upper_bound_to_shortest_path_weight = INVALID_EDGE_WEIGHT;
|
||||
NodeID middle_node = SPECIAL_NODEID;
|
||||
const EdgeWeight min_edge_offset =
|
||||
std::min(phantom_node_pair.source_phantom.forward_segment_id.enabled
|
||||
? -phantom_node_pair.source_phantom.GetForwardWeightPlusOffset()
|
||||
: 0,
|
||||
phantom_node_pair.source_phantom.reverse_segment_id.enabled
|
||||
? -phantom_node_pair.source_phantom.GetReverseWeightPlusOffset()
|
||||
: 0);
|
||||
|
||||
if (phantom_node_pair.source_phantom.forward_segment_id.enabled)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.source_phantom.forward_segment_id.id != SPECIAL_SEGMENTID);
|
||||
forward_heap1.Insert(phantom_node_pair.source_phantom.forward_segment_id.id,
|
||||
-phantom_node_pair.source_phantom.GetForwardWeightPlusOffset(),
|
||||
phantom_node_pair.source_phantom.forward_segment_id.id);
|
||||
}
|
||||
if (phantom_node_pair.source_phantom.reverse_segment_id.enabled)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.source_phantom.reverse_segment_id.id != SPECIAL_SEGMENTID);
|
||||
forward_heap1.Insert(phantom_node_pair.source_phantom.reverse_segment_id.id,
|
||||
-phantom_node_pair.source_phantom.GetReverseWeightPlusOffset(),
|
||||
phantom_node_pair.source_phantom.reverse_segment_id.id);
|
||||
}
|
||||
|
||||
if (phantom_node_pair.target_phantom.forward_segment_id.enabled)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.target_phantom.forward_segment_id.id != SPECIAL_SEGMENTID);
|
||||
reverse_heap1.Insert(phantom_node_pair.target_phantom.forward_segment_id.id,
|
||||
phantom_node_pair.target_phantom.GetForwardWeightPlusOffset(),
|
||||
phantom_node_pair.target_phantom.forward_segment_id.id);
|
||||
}
|
||||
if (phantom_node_pair.target_phantom.reverse_segment_id.enabled)
|
||||
{
|
||||
BOOST_ASSERT(phantom_node_pair.target_phantom.reverse_segment_id.id != SPECIAL_SEGMENTID);
|
||||
reverse_heap1.Insert(phantom_node_pair.target_phantom.reverse_segment_id.id,
|
||||
phantom_node_pair.target_phantom.GetReverseWeightPlusOffset(),
|
||||
phantom_node_pair.target_phantom.reverse_segment_id.id);
|
||||
}
|
||||
|
||||
// search from s and t till new_min/(1+epsilon) > length_of_shortest_path
|
||||
while (0 < (forward_heap1.Size() + reverse_heap1.Size()))
|
||||
{
|
||||
if (0 < forward_heap1.Size())
|
||||
{
|
||||
alternativeRoutingStep<true>(facade,
|
||||
forward_heap1,
|
||||
reverse_heap1,
|
||||
&middle_node,
|
||||
&upper_bound_to_shortest_path_weight,
|
||||
via_node_candidate_list,
|
||||
forward_search_space,
|
||||
min_edge_offset);
|
||||
}
|
||||
if (0 < reverse_heap1.Size())
|
||||
{
|
||||
alternativeRoutingStep<false>(facade,
|
||||
forward_heap1,
|
||||
reverse_heap1,
|
||||
&middle_node,
|
||||
&upper_bound_to_shortest_path_weight,
|
||||
via_node_candidate_list,
|
||||
reverse_search_space,
|
||||
min_edge_offset);
|
||||
}
|
||||
}
|
||||
|
||||
if (INVALID_EDGE_WEIGHT == upper_bound_to_shortest_path_weight)
|
||||
{
|
||||
return raw_route_data;
|
||||
}
|
||||
|
||||
std::sort(begin(via_node_candidate_list), end(via_node_candidate_list));
|
||||
auto unique_end = std::unique(begin(via_node_candidate_list), end(via_node_candidate_list));
|
||||
via_node_candidate_list.resize(unique_end - begin(via_node_candidate_list));
|
||||
|
||||
std::vector<NodeID> packed_forward_path;
|
||||
std::vector<NodeID> packed_reverse_path;
|
||||
|
||||
const bool path_is_a_loop =
|
||||
upper_bound_to_shortest_path_weight !=
|
||||
forward_heap1.GetKey(middle_node) + reverse_heap1.GetKey(middle_node);
|
||||
if (path_is_a_loop)
|
||||
{
|
||||
// Self Loop
|
||||
packed_forward_path.push_back(middle_node);
|
||||
packed_forward_path.push_back(middle_node);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
retrievePackedPathFromSingleHeap(forward_heap1, middle_node, packed_forward_path);
|
||||
retrievePackedPathFromSingleHeap(reverse_heap1, middle_node, packed_reverse_path);
|
||||
}
|
||||
|
||||
// this set is is used as an indicator if a node is on the shortest path
|
||||
std::unordered_set<NodeID> nodes_in_path(packed_forward_path.size() +
|
||||
packed_reverse_path.size());
|
||||
nodes_in_path.insert(packed_forward_path.begin(), packed_forward_path.end());
|
||||
nodes_in_path.insert(middle_node);
|
||||
nodes_in_path.insert(packed_reverse_path.begin(), packed_reverse_path.end());
|
||||
|
||||
std::unordered_map<NodeID, int> approximated_forward_sharing;
|
||||
std::unordered_map<NodeID, int> approximated_reverse_sharing;
|
||||
|
||||
// sweep over search space, compute forward sharing for each current edge (u,v)
|
||||
for (const SearchSpaceEdge ¤t_edge : forward_search_space)
|
||||
{
|
||||
const NodeID u = current_edge.first;
|
||||
const NodeID v = current_edge.second;
|
||||
|
||||
if (nodes_in_path.find(v) != nodes_in_path.end())
|
||||
{
|
||||
// current_edge is on shortest path => sharing(v):=queue.GetKey(v);
|
||||
approximated_forward_sharing.emplace(v, forward_heap1.GetKey(v));
|
||||
}
|
||||
else
|
||||
{
|
||||
// current edge is not on shortest path. Check if we know a value for the other
|
||||
// endpoint
|
||||
const auto sharing_of_u_iterator = approximated_forward_sharing.find(u);
|
||||
if (sharing_of_u_iterator != approximated_forward_sharing.end())
|
||||
{
|
||||
approximated_forward_sharing.emplace(v, sharing_of_u_iterator->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sweep over search space, compute backward sharing
|
||||
for (const SearchSpaceEdge ¤t_edge : reverse_search_space)
|
||||
{
|
||||
const NodeID u = current_edge.first;
|
||||
const NodeID v = current_edge.second;
|
||||
if (nodes_in_path.find(v) != nodes_in_path.end())
|
||||
{
|
||||
// current_edge is on shortest path => sharing(u):=queue.GetKey(u);
|
||||
approximated_reverse_sharing.emplace(v, reverse_heap1.GetKey(v));
|
||||
}
|
||||
else
|
||||
{
|
||||
// current edge is not on shortest path. Check if we know a value for the other
|
||||
// endpoint
|
||||
const auto sharing_of_u_iterator = approximated_reverse_sharing.find(u);
|
||||
if (sharing_of_u_iterator != approximated_reverse_sharing.end())
|
||||
{
|
||||
approximated_reverse_sharing.emplace(v, sharing_of_u_iterator->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<NodeID> preselected_node_list;
|
||||
for (const NodeID node : via_node_candidate_list)
|
||||
{
|
||||
if (node == middle_node)
|
||||
continue;
|
||||
const auto fwd_iterator = approximated_forward_sharing.find(node);
|
||||
const int fwd_sharing =
|
||||
(fwd_iterator != approximated_forward_sharing.end()) ? fwd_iterator->second : 0;
|
||||
const auto rev_iterator = approximated_reverse_sharing.find(node);
|
||||
const int rev_sharing =
|
||||
(rev_iterator != approximated_reverse_sharing.end()) ? rev_iterator->second : 0;
|
||||
|
||||
const int approximated_sharing = fwd_sharing + rev_sharing;
|
||||
const int approximated_length = forward_heap1.GetKey(node) + reverse_heap1.GetKey(node);
|
||||
const bool length_passes =
|
||||
(approximated_length < upper_bound_to_shortest_path_weight * (1 + VIAPATH_EPSILON));
|
||||
const bool sharing_passes =
|
||||
(approximated_sharing <= upper_bound_to_shortest_path_weight * VIAPATH_GAMMA);
|
||||
const bool stretch_passes =
|
||||
(approximated_length - approximated_sharing) <
|
||||
((1. + VIAPATH_ALPHA) * (upper_bound_to_shortest_path_weight - approximated_sharing));
|
||||
|
||||
if (length_passes && sharing_passes && stretch_passes)
|
||||
{
|
||||
preselected_node_list.emplace_back(node);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<NodeID> &packed_shortest_path = packed_forward_path;
|
||||
if (!path_is_a_loop)
|
||||
{
|
||||
std::reverse(packed_shortest_path.begin(), packed_shortest_path.end());
|
||||
packed_shortest_path.emplace_back(middle_node);
|
||||
packed_shortest_path.insert(
|
||||
packed_shortest_path.end(), packed_reverse_path.begin(), packed_reverse_path.end());
|
||||
}
|
||||
std::vector<RankedCandidateNode> ranked_candidates_list;
|
||||
|
||||
// prioritizing via nodes for deep inspection
|
||||
for (const NodeID node : preselected_node_list)
|
||||
{
|
||||
int length_of_via_path = 0, sharing_of_via_path = 0;
|
||||
computeLengthAndSharingOfViaPath(engine_working_data,
|
||||
facade,
|
||||
node,
|
||||
&length_of_via_path,
|
||||
&sharing_of_via_path,
|
||||
packed_shortest_path,
|
||||
min_edge_offset);
|
||||
const int maximum_allowed_sharing =
|
||||
static_cast<int>(upper_bound_to_shortest_path_weight * VIAPATH_GAMMA);
|
||||
if (sharing_of_via_path <= maximum_allowed_sharing &&
|
||||
length_of_via_path <= upper_bound_to_shortest_path_weight * (1 + VIAPATH_EPSILON))
|
||||
{
|
||||
ranked_candidates_list.emplace_back(node, length_of_via_path, sharing_of_via_path);
|
||||
}
|
||||
}
|
||||
std::sort(ranked_candidates_list.begin(), ranked_candidates_list.end());
|
||||
|
||||
NodeID selected_via_node = SPECIAL_NODEID;
|
||||
int length_of_via_path = INVALID_EDGE_WEIGHT;
|
||||
NodeID s_v_middle = SPECIAL_NODEID, v_t_middle = SPECIAL_NODEID;
|
||||
for (const RankedCandidateNode &candidate : ranked_candidates_list)
|
||||
{
|
||||
if (viaNodeCandidatePassesTTest(engine_working_data,
|
||||
facade,
|
||||
forward_heap1,
|
||||
reverse_heap1,
|
||||
forward_heap2,
|
||||
reverse_heap2,
|
||||
candidate,
|
||||
upper_bound_to_shortest_path_weight,
|
||||
&length_of_via_path,
|
||||
&s_v_middle,
|
||||
&v_t_middle,
|
||||
min_edge_offset))
|
||||
{
|
||||
// select first admissable
|
||||
selected_via_node = candidate.node;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Unpack shortest path and alternative, if they exist
|
||||
if (INVALID_EDGE_WEIGHT != upper_bound_to_shortest_path_weight)
|
||||
{
|
||||
BOOST_ASSERT(!packed_shortest_path.empty());
|
||||
raw_route_data.unpacked_path_segments.resize(1);
|
||||
raw_route_data.source_traversed_in_reverse.push_back(
|
||||
(packed_shortest_path.front() !=
|
||||
phantom_node_pair.source_phantom.forward_segment_id.id));
|
||||
raw_route_data.target_traversed_in_reverse.push_back((
|
||||
packed_shortest_path.back() != phantom_node_pair.target_phantom.forward_segment_id.id));
|
||||
|
||||
unpackPath(facade,
|
||||
// -- packed input
|
||||
packed_shortest_path.begin(),
|
||||
packed_shortest_path.end(),
|
||||
// -- start of route
|
||||
phantom_node_pair,
|
||||
// -- unpacked output
|
||||
raw_route_data.unpacked_path_segments.front());
|
||||
raw_route_data.shortest_path_length = upper_bound_to_shortest_path_weight;
|
||||
}
|
||||
|
||||
if (SPECIAL_NODEID != selected_via_node)
|
||||
{
|
||||
std::vector<NodeID> packed_alternate_path;
|
||||
// retrieve alternate path
|
||||
retrievePackedAlternatePath(forward_heap1,
|
||||
reverse_heap1,
|
||||
forward_heap2,
|
||||
reverse_heap2,
|
||||
s_v_middle,
|
||||
v_t_middle,
|
||||
packed_alternate_path);
|
||||
|
||||
raw_route_data.alt_source_traversed_in_reverse.push_back(
|
||||
(packed_alternate_path.front() !=
|
||||
phantom_node_pair.source_phantom.forward_segment_id.id));
|
||||
raw_route_data.alt_target_traversed_in_reverse.push_back(
|
||||
(packed_alternate_path.back() !=
|
||||
phantom_node_pair.target_phantom.forward_segment_id.id));
|
||||
|
||||
// unpack the alternate path
|
||||
unpackPath(facade,
|
||||
packed_alternate_path.begin(),
|
||||
packed_alternate_path.end(),
|
||||
phantom_node_pair,
|
||||
raw_route_data.unpacked_alternative);
|
||||
|
||||
raw_route_data.alternative_path_length = length_of_via_path;
|
||||
}
|
||||
else
|
||||
{
|
||||
BOOST_ASSERT(raw_route_data.alternative_path_length == INVALID_EDGE_WEIGHT);
|
||||
}
|
||||
|
||||
return raw_route_data;
|
||||
}
|
||||
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
|
@ -1,5 +1,7 @@
|
||||
#include "engine/routing_algorithms/direct_shortest_path.hpp"
|
||||
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace engine
|
||||
@ -13,11 +15,12 @@ namespace routing_algorithms
|
||||
/// by the previous route.
|
||||
/// This variation is only an optimazation for graphs with slow queries, for example
|
||||
/// not fully contracted graphs.
|
||||
void DirectShortestPathRouting<algorithm::CH>::
|
||||
operator()(const FacadeT &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector,
|
||||
InternalRouteResult &raw_route_data) const
|
||||
InternalRouteResult directShortestPathSearch(
|
||||
SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector)
|
||||
{
|
||||
InternalRouteResult raw_route_data;
|
||||
// Get weight to next pair of target nodes.
|
||||
BOOST_ASSERT_MSG(1 == phantom_nodes_vector.size(),
|
||||
"Direct Shortest Path Query only accepts a single source and target pair. "
|
||||
@ -27,8 +30,8 @@ operator()(const FacadeT &facade,
|
||||
const auto &target_phantom = phantom_node_pair.target_phantom;
|
||||
|
||||
engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
QueryHeap &forward_heap = *(engine_working_data.forward_heap_1);
|
||||
QueryHeap &reverse_heap = *(engine_working_data.reverse_heap_1);
|
||||
auto &forward_heap = *(engine_working_data.forward_heap_1);
|
||||
auto &reverse_heap = *(engine_working_data.reverse_heap_1);
|
||||
forward_heap.Clear();
|
||||
reverse_heap.Clear();
|
||||
|
||||
@ -71,12 +74,12 @@ operator()(const FacadeT &facade,
|
||||
if (facade.GetCoreSize() > 0)
|
||||
{
|
||||
engine_working_data.InitializeOrClearSecondThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
QueryHeap &forward_core_heap = *(engine_working_data.forward_heap_2);
|
||||
QueryHeap &reverse_core_heap = *(engine_working_data.reverse_heap_2);
|
||||
auto &forward_core_heap = *(engine_working_data.forward_heap_2);
|
||||
auto &reverse_core_heap = *(engine_working_data.reverse_heap_2);
|
||||
forward_core_heap.Clear();
|
||||
reverse_core_heap.Clear();
|
||||
|
||||
super::SearchWithCore(facade,
|
||||
searchWithCore(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
forward_core_heap,
|
||||
@ -88,7 +91,7 @@ operator()(const FacadeT &facade,
|
||||
}
|
||||
else
|
||||
{
|
||||
super::Search(facade,
|
||||
search(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
weight,
|
||||
@ -102,7 +105,7 @@ operator()(const FacadeT &facade,
|
||||
{
|
||||
raw_route_data.shortest_path_length = INVALID_EDGE_WEIGHT;
|
||||
raw_route_data.alternative_path_length = INVALID_EDGE_WEIGHT;
|
||||
return;
|
||||
return raw_route_data;
|
||||
}
|
||||
|
||||
BOOST_ASSERT_MSG(!packed_leg.empty(), "packed path empty");
|
||||
@ -114,11 +117,13 @@ operator()(const FacadeT &facade,
|
||||
raw_route_data.target_traversed_in_reverse.push_back(
|
||||
(packed_leg.back() != phantom_node_pair.target_phantom.forward_segment_id.id));
|
||||
|
||||
super::UnpackPath(facade,
|
||||
unpackPath(facade,
|
||||
packed_leg.begin(),
|
||||
packed_leg.end(),
|
||||
phantom_node_pair,
|
||||
raw_route_data.unpacked_path_segments.front());
|
||||
|
||||
return raw_route_data;
|
||||
}
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
|
@ -1,4 +1,12 @@
|
||||
#include "engine/routing_algorithms/many_to_many.hpp"
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include <boost/assert.hpp>
|
||||
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
@ -7,11 +15,172 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
std::vector<EdgeWeight> ManyToManyRouting<algorithm::CH>::
|
||||
operator()(const FacadeT &facade,
|
||||
using QueryHeap = SearchEngineData::ManyToManyQueryHeap;
|
||||
|
||||
namespace
|
||||
{
|
||||
struct NodeBucket
|
||||
{
|
||||
unsigned target_id; // essentially a row in the weight matrix
|
||||
EdgeWeight weight;
|
||||
EdgeWeight duration;
|
||||
NodeBucket(const unsigned target_id, const EdgeWeight weight, const EdgeWeight duration)
|
||||
: target_id(target_id), weight(weight), duration(duration)
|
||||
{
|
||||
}
|
||||
};
|
||||
// FIXME This should be replaced by an std::unordered_multimap, though this needs benchmarking
|
||||
using SearchSpaceWithBuckets = std::unordered_map<NodeID, std::vector<NodeBucket>>;
|
||||
|
||||
template <bool forward_direction>
|
||||
void relaxOutgoingEdges(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const NodeID node,
|
||||
const EdgeWeight weight,
|
||||
const EdgeWeight duration,
|
||||
QueryHeap &query_heap)
|
||||
{
|
||||
for (auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
const bool direction_flag = (forward_direction ? data.forward : data.backward);
|
||||
if (direction_flag)
|
||||
{
|
||||
const NodeID to = facade.GetTarget(edge);
|
||||
const EdgeWeight edge_weight = data.weight;
|
||||
const EdgeWeight edge_duration = data.duration;
|
||||
|
||||
BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid");
|
||||
const EdgeWeight to_weight = weight + edge_weight;
|
||||
const EdgeWeight to_duration = duration + edge_duration;
|
||||
|
||||
// New Node discovered -> Add to Heap + Node Info Storage
|
||||
if (!query_heap.WasInserted(to))
|
||||
{
|
||||
query_heap.Insert(to, to_weight, {node, to_duration});
|
||||
}
|
||||
// Found a shorter Path -> Update weight
|
||||
else if (to_weight < query_heap.GetKey(to))
|
||||
{
|
||||
// new parent
|
||||
query_heap.GetData(to) = {node, to_duration};
|
||||
query_heap.DecreaseKey(to, to_weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Stalling
|
||||
template <bool forward_direction>
|
||||
bool stallAtNode(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const NodeID node,
|
||||
const EdgeWeight weight,
|
||||
QueryHeap &query_heap)
|
||||
{
|
||||
for (auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
const bool reverse_flag = ((!forward_direction) ? data.forward : data.backward);
|
||||
if (reverse_flag)
|
||||
{
|
||||
const NodeID to = facade.GetTarget(edge);
|
||||
const EdgeWeight edge_weight = data.weight;
|
||||
BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid");
|
||||
if (query_heap.WasInserted(to))
|
||||
{
|
||||
if (query_heap.GetKey(to) + edge_weight < weight)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void ForwardRoutingStep(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const unsigned row_idx,
|
||||
const unsigned number_of_targets,
|
||||
QueryHeap &query_heap,
|
||||
const SearchSpaceWithBuckets &search_space_with_buckets,
|
||||
std::vector<EdgeWeight> &weights_table,
|
||||
std::vector<EdgeWeight> &durations_table)
|
||||
{
|
||||
const NodeID node = query_heap.DeleteMin();
|
||||
const EdgeWeight source_weight = query_heap.GetKey(node);
|
||||
const EdgeWeight source_duration = query_heap.GetData(node).duration;
|
||||
|
||||
// check if each encountered node has an entry
|
||||
const auto bucket_iterator = search_space_with_buckets.find(node);
|
||||
// iterate bucket if there exists one
|
||||
if (bucket_iterator != search_space_with_buckets.end())
|
||||
{
|
||||
const std::vector<NodeBucket> &bucket_list = bucket_iterator->second;
|
||||
for (const NodeBucket ¤t_bucket : bucket_list)
|
||||
{
|
||||
// get target id from bucket entry
|
||||
const unsigned column_idx = current_bucket.target_id;
|
||||
const EdgeWeight target_weight = current_bucket.weight;
|
||||
const EdgeWeight target_duration = current_bucket.duration;
|
||||
|
||||
auto ¤t_weight = weights_table[row_idx * number_of_targets + column_idx];
|
||||
auto ¤t_duration = durations_table[row_idx * number_of_targets + column_idx];
|
||||
|
||||
// check if new weight is better
|
||||
const EdgeWeight new_weight = source_weight + target_weight;
|
||||
if (new_weight < 0)
|
||||
{
|
||||
const EdgeWeight loop_weight = getLoopWeight<false>(facade, node);
|
||||
const EdgeWeight new_weight_with_loop = new_weight + loop_weight;
|
||||
if (loop_weight != INVALID_EDGE_WEIGHT && new_weight_with_loop >= 0)
|
||||
{
|
||||
current_weight = std::min(current_weight, new_weight_with_loop);
|
||||
current_duration = std::min(current_duration,
|
||||
source_duration + target_duration +
|
||||
getLoopWeight<true>(facade, node));
|
||||
}
|
||||
}
|
||||
else if (new_weight < current_weight)
|
||||
{
|
||||
current_weight = new_weight;
|
||||
current_duration = source_duration + target_duration;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (stallAtNode<true>(facade, node, source_weight, query_heap))
|
||||
{
|
||||
return;
|
||||
}
|
||||
relaxOutgoingEdges<true>(facade, node, source_weight, source_duration, query_heap);
|
||||
}
|
||||
|
||||
void backwardRoutingStep(
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const unsigned column_idx,
|
||||
QueryHeap &query_heap,
|
||||
SearchSpaceWithBuckets &search_space_with_buckets)
|
||||
{
|
||||
const NodeID node = query_heap.DeleteMin();
|
||||
const EdgeWeight target_weight = query_heap.GetKey(node);
|
||||
const EdgeWeight target_duration = query_heap.GetData(node).duration;
|
||||
|
||||
// store settled nodes in search space bucket
|
||||
search_space_with_buckets[node].emplace_back(column_idx, target_weight, target_duration);
|
||||
|
||||
if (stallAtNode<false>(facade, node, target_weight, query_heap))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
relaxOutgoingEdges<false>(facade, node, target_weight, target_duration, query_heap);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<EdgeWeight>
|
||||
manyToManySearch(SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<PhantomNode> &phantom_nodes,
|
||||
const std::vector<std::size_t> &source_indices,
|
||||
const std::vector<std::size_t> &target_indices) const
|
||||
const std::vector<std::size_t> &target_indices)
|
||||
{
|
||||
const auto number_of_sources =
|
||||
source_indices.empty() ? phantom_nodes.size() : source_indices.size();
|
||||
@ -24,7 +193,7 @@ operator()(const FacadeT &facade,
|
||||
|
||||
engine_working_data.InitializeOrClearManyToManyThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
|
||||
QueryHeap &query_heap = *(engine_working_data.many_to_many_heap);
|
||||
auto &query_heap = *(engine_working_data.many_to_many_heap);
|
||||
|
||||
SearchSpaceWithBuckets search_space_with_buckets;
|
||||
|
||||
@ -49,7 +218,7 @@ operator()(const FacadeT &facade,
|
||||
// explore search space
|
||||
while (!query_heap.Empty())
|
||||
{
|
||||
BackwardRoutingStep(facade, column_idx, query_heap, search_space_with_buckets);
|
||||
backwardRoutingStep(facade, column_idx, query_heap, search_space_with_buckets);
|
||||
}
|
||||
++column_idx;
|
||||
};
|
||||
@ -122,84 +291,6 @@ operator()(const FacadeT &facade,
|
||||
return durations_table;
|
||||
}
|
||||
|
||||
void ManyToManyRouting<algorithm::CH>::ForwardRoutingStep(
|
||||
const FacadeT &facade,
|
||||
const unsigned row_idx,
|
||||
const unsigned number_of_targets,
|
||||
QueryHeap &query_heap,
|
||||
const SearchSpaceWithBuckets &search_space_with_buckets,
|
||||
std::vector<EdgeWeight> &weights_table,
|
||||
std::vector<EdgeWeight> &durations_table) const
|
||||
{
|
||||
const NodeID node = query_heap.DeleteMin();
|
||||
const EdgeWeight source_weight = query_heap.GetKey(node);
|
||||
const EdgeWeight source_duration = query_heap.GetData(node).duration;
|
||||
|
||||
// check if each encountered node has an entry
|
||||
const auto bucket_iterator = search_space_with_buckets.find(node);
|
||||
// iterate bucket if there exists one
|
||||
if (bucket_iterator != search_space_with_buckets.end())
|
||||
{
|
||||
const std::vector<NodeBucket> &bucket_list = bucket_iterator->second;
|
||||
for (const NodeBucket ¤t_bucket : bucket_list)
|
||||
{
|
||||
// get target id from bucket entry
|
||||
const unsigned column_idx = current_bucket.target_id;
|
||||
const EdgeWeight target_weight = current_bucket.weight;
|
||||
const EdgeWeight target_duration = current_bucket.duration;
|
||||
|
||||
auto ¤t_weight = weights_table[row_idx * number_of_targets + column_idx];
|
||||
auto ¤t_duration = durations_table[row_idx * number_of_targets + column_idx];
|
||||
|
||||
// check if new weight is better
|
||||
const EdgeWeight new_weight = source_weight + target_weight;
|
||||
if (new_weight < 0)
|
||||
{
|
||||
const EdgeWeight loop_weight = super::GetLoopWeight<false>(facade, node);
|
||||
const EdgeWeight new_weight_with_loop = new_weight + loop_weight;
|
||||
if (loop_weight != INVALID_EDGE_WEIGHT && new_weight_with_loop >= 0)
|
||||
{
|
||||
current_weight = std::min(current_weight, new_weight_with_loop);
|
||||
current_duration = std::min(current_duration,
|
||||
source_duration + target_duration +
|
||||
super::GetLoopWeight<true>(facade, node));
|
||||
}
|
||||
}
|
||||
else if (new_weight < current_weight)
|
||||
{
|
||||
current_weight = new_weight;
|
||||
current_duration = source_duration + target_duration;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (StallAtNode<true>(facade, node, source_weight, query_heap))
|
||||
{
|
||||
return;
|
||||
}
|
||||
RelaxOutgoingEdges<true>(facade, node, source_weight, source_duration, query_heap);
|
||||
}
|
||||
|
||||
void ManyToManyRouting<algorithm::CH>::BackwardRoutingStep(
|
||||
const FacadeT &facade,
|
||||
const unsigned column_idx,
|
||||
QueryHeap &query_heap,
|
||||
SearchSpaceWithBuckets &search_space_with_buckets) const
|
||||
{
|
||||
const NodeID node = query_heap.DeleteMin();
|
||||
const EdgeWeight target_weight = query_heap.GetKey(node);
|
||||
const EdgeWeight target_duration = query_heap.GetData(node).duration;
|
||||
|
||||
// store settled nodes in search space bucket
|
||||
search_space_with_buckets[node].emplace_back(column_idx, target_weight, target_duration);
|
||||
|
||||
if (StallAtNode<false>(facade, node, target_weight, query_heap))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
RelaxOutgoingEdges<false>(facade, node, target_weight, target_duration, query_heap);
|
||||
}
|
||||
|
||||
} // namespace routing_algorithms
|
||||
} // namespace engine
|
||||
} // namespace osrm
|
||||
|
@ -1,4 +1,20 @@
|
||||
#include "engine/routing_algorithms/map_matching.hpp"
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include "engine/map_matching/hidden_markov_model.hpp"
|
||||
#include "engine/map_matching/matching_confidence.hpp"
|
||||
#include "engine/map_matching/sub_matching.hpp"
|
||||
|
||||
#include "util/coordinate_calculation.hpp"
|
||||
#include "util/for_each_pair.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <deque>
|
||||
#include <iomanip>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
#include <utility>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
@ -7,8 +23,15 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
unsigned
|
||||
MapMatching<algorithm::CH>::GetMedianSampleTime(const std::vector<unsigned> ×tamps) const
|
||||
namespace
|
||||
{
|
||||
using HMM = map_matching::HiddenMarkovModel<CandidateLists>;
|
||||
|
||||
constexpr static const unsigned MAX_BROKEN_STATES = 10;
|
||||
constexpr static const double MATCHING_BETA = 10;
|
||||
constexpr static const double MAX_DISTANCE_DELTA = 2000.;
|
||||
|
||||
unsigned getMedianSampleTime(const std::vector<unsigned> ×tamps)
|
||||
{
|
||||
BOOST_ASSERT(timestamps.size() > 1);
|
||||
|
||||
@ -22,14 +45,20 @@ MapMatching<algorithm::CH>::GetMedianSampleTime(const std::vector<unsigned> &tim
|
||||
std::nth_element(first_elem, median, sample_times.end());
|
||||
return *median;
|
||||
}
|
||||
}
|
||||
|
||||
SubMatchingList MapMatching<algorithm::CH>::
|
||||
operator()(const FacadeT &facade,
|
||||
SubMatchingList
|
||||
mapMatching(SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const CandidateLists &candidates_list,
|
||||
const std::vector<util::Coordinate> &trace_coordinates,
|
||||
const std::vector<unsigned> &trace_timestamps,
|
||||
const std::vector<boost::optional<double>> &trace_gps_precision) const
|
||||
const std::vector<boost::optional<double>> &trace_gps_precision)
|
||||
{
|
||||
map_matching::MatchingConfidence confidence;
|
||||
map_matching::EmissionLogProbability default_emission_log_probability(DEFAULT_GPS_PRECISION);
|
||||
map_matching::TransitionLogProbability transition_log_probability(MATCHING_BETA);
|
||||
|
||||
SubMatchingList sub_matchings;
|
||||
|
||||
BOOST_ASSERT(candidates_list.size() == trace_coordinates.size());
|
||||
@ -40,7 +69,7 @@ operator()(const FacadeT &facade,
|
||||
const auto median_sample_time = [&] {
|
||||
if (use_timestamps)
|
||||
{
|
||||
return std::max(1u, GetMedianSampleTime(trace_timestamps));
|
||||
return std::max(1u, getMedianSampleTime(trace_timestamps));
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -68,7 +97,7 @@ operator()(const FacadeT &facade,
|
||||
std::transform(candidates_list[t].begin(),
|
||||
candidates_list[t].end(),
|
||||
emission_log_probabilities[t].begin(),
|
||||
[this](const PhantomNodeWithDistance &candidate) {
|
||||
[&](const PhantomNodeWithDistance &candidate) {
|
||||
return default_emission_log_probability(candidate.distance);
|
||||
});
|
||||
}
|
||||
@ -95,7 +124,7 @@ operator()(const FacadeT &facade,
|
||||
std::transform(candidates_list[t].begin(),
|
||||
candidates_list[t].end(),
|
||||
emission_log_probabilities[t].begin(),
|
||||
[this](const PhantomNodeWithDistance &candidate) {
|
||||
[&](const PhantomNodeWithDistance &candidate) {
|
||||
return default_emission_log_probability(candidate.distance);
|
||||
});
|
||||
}
|
||||
@ -113,10 +142,10 @@ operator()(const FacadeT &facade,
|
||||
engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
engine_working_data.InitializeOrClearSecondThreadLocalStorage(facade.GetNumberOfNodes());
|
||||
|
||||
QueryHeap &forward_heap = *(engine_working_data.forward_heap_1);
|
||||
QueryHeap &reverse_heap = *(engine_working_data.reverse_heap_1);
|
||||
QueryHeap &forward_core_heap = *(engine_working_data.forward_heap_2);
|
||||
QueryHeap &reverse_core_heap = *(engine_working_data.reverse_heap_2);
|
||||
auto &forward_heap = *(engine_working_data.forward_heap_1);
|
||||
auto &reverse_heap = *(engine_working_data.reverse_heap_1);
|
||||
auto &forward_core_heap = *(engine_working_data.forward_heap_2);
|
||||
auto &reverse_core_heap = *(engine_working_data.reverse_heap_2);
|
||||
|
||||
std::size_t breakage_begin = map_matching::INVALID_STATE;
|
||||
std::vector<std::size_t> split_points;
|
||||
@ -187,7 +216,7 @@ operator()(const FacadeT &facade,
|
||||
{
|
||||
forward_core_heap.Clear();
|
||||
reverse_core_heap.Clear();
|
||||
network_distance = super::GetNetworkDistanceWithCore(
|
||||
network_distance = getNetworkDistanceWithCore(
|
||||
facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
@ -199,8 +228,8 @@ operator()(const FacadeT &facade,
|
||||
}
|
||||
else
|
||||
{
|
||||
network_distance = super::GetNetworkDistance(
|
||||
facade,
|
||||
network_distance =
|
||||
getNetworkDistance(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
prev_unbroken_timestamps_list[s].phantom_node,
|
||||
|
@ -7,7 +7,7 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
void BasicRouting<algorithm::CH>::RoutingStep(const FacadeT &facade,
|
||||
void routingStep(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
NodeID &middle_node_id,
|
||||
@ -16,7 +16,7 @@ void BasicRouting<algorithm::CH>::RoutingStep(const FacadeT &facade,
|
||||
const bool forward_direction,
|
||||
const bool stalling,
|
||||
const bool force_loop_forward,
|
||||
const bool force_loop_reverse) const
|
||||
const bool force_loop_reverse)
|
||||
{
|
||||
const NodeID node = forward_heap.DeleteMin();
|
||||
const EdgeWeight weight = forward_heap.GetKey(node);
|
||||
@ -36,7 +36,7 @@ void BasicRouting<algorithm::CH>::RoutingStep(const FacadeT &facade,
|
||||
// check whether there is a loop present at the node
|
||||
for (const auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const EdgeData &data = facade.GetEdgeData(edge);
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
bool forward_directionFlag = (forward_direction ? data.forward : data.backward);
|
||||
if (forward_directionFlag)
|
||||
{
|
||||
@ -78,7 +78,7 @@ void BasicRouting<algorithm::CH>::RoutingStep(const FacadeT &facade,
|
||||
{
|
||||
for (const auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const EdgeData &data = facade.GetEdgeData(edge);
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
const bool reverse_flag = ((!forward_direction) ? data.forward : data.backward);
|
||||
if (reverse_flag)
|
||||
{
|
||||
@ -100,7 +100,7 @@ void BasicRouting<algorithm::CH>::RoutingStep(const FacadeT &facade,
|
||||
|
||||
for (const auto edge : facade.GetAdjacentEdgeRange(node))
|
||||
{
|
||||
const EdgeData &data = facade.GetEdgeData(edge);
|
||||
const auto &data = facade.GetEdgeData(edge);
|
||||
bool forward_directionFlag = (forward_direction ? data.forward : data.backward);
|
||||
if (forward_directionFlag)
|
||||
{
|
||||
@ -133,38 +133,35 @@ void BasicRouting<algorithm::CH>::RoutingStep(const FacadeT &facade,
|
||||
* @param to the node the CH edge finishes at
|
||||
* @param unpacked_path the sequence of original NodeIDs that make up the expanded CH edge
|
||||
*/
|
||||
void BasicRouting<algorithm::CH>::UnpackEdge(const FacadeT &facade,
|
||||
void unpackEdge(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const NodeID from,
|
||||
const NodeID to,
|
||||
std::vector<NodeID> &unpacked_path) const
|
||||
std::vector<NodeID> &unpacked_path)
|
||||
{
|
||||
std::array<NodeID, 2> path{{from, to}};
|
||||
UnpackCHPath(
|
||||
facade,
|
||||
unpackPath(facade,
|
||||
path.begin(),
|
||||
path.end(),
|
||||
[&unpacked_path](const std::pair<NodeID, NodeID> &edge, const EdgeData & /* data */) {
|
||||
[&unpacked_path](const std::pair<NodeID, NodeID> &edge, const auto & /* data */) {
|
||||
unpacked_path.emplace_back(edge.first);
|
||||
});
|
||||
unpacked_path.emplace_back(to);
|
||||
}
|
||||
|
||||
void BasicRouting<algorithm::CH>::RetrievePackedPathFromHeap(
|
||||
const SearchEngineData::QueryHeap &forward_heap,
|
||||
void retrievePackedPathFromHeap(const SearchEngineData::QueryHeap &forward_heap,
|
||||
const SearchEngineData::QueryHeap &reverse_heap,
|
||||
const NodeID middle_node_id,
|
||||
std::vector<NodeID> &packed_path) const
|
||||
std::vector<NodeID> &packed_path)
|
||||
{
|
||||
RetrievePackedPathFromSingleHeap(forward_heap, middle_node_id, packed_path);
|
||||
retrievePackedPathFromSingleHeap(forward_heap, middle_node_id, packed_path);
|
||||
std::reverse(packed_path.begin(), packed_path.end());
|
||||
packed_path.emplace_back(middle_node_id);
|
||||
RetrievePackedPathFromSingleHeap(reverse_heap, middle_node_id, packed_path);
|
||||
retrievePackedPathFromSingleHeap(reverse_heap, middle_node_id, packed_path);
|
||||
}
|
||||
|
||||
void BasicRouting<algorithm::CH>::RetrievePackedPathFromSingleHeap(
|
||||
const SearchEngineData::QueryHeap &search_heap,
|
||||
void retrievePackedPathFromSingleHeap(const SearchEngineData::QueryHeap &search_heap,
|
||||
const NodeID middle_node_id,
|
||||
std::vector<NodeID> &packed_path) const
|
||||
std::vector<NodeID> &packed_path)
|
||||
{
|
||||
NodeID current_node_id = middle_node_id;
|
||||
// all initial nodes will have itself as parent, or a node not in the heap
|
||||
@ -191,14 +188,14 @@ void BasicRouting<algorithm::CH>::RetrievePackedPathFromSingleHeap(
|
||||
// && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
|
||||
// requires
|
||||
// a force loop, if the heaps have been initialized with positive offsets.
|
||||
void BasicRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
void search(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
EdgeWeight &weight,
|
||||
std::vector<NodeID> &packed_leg,
|
||||
const bool force_loop_forward,
|
||||
const bool force_loop_reverse,
|
||||
const EdgeWeight weight_upper_bound) const
|
||||
const EdgeWeight weight_upper_bound)
|
||||
{
|
||||
NodeID middle = SPECIAL_NODEID;
|
||||
weight = weight_upper_bound;
|
||||
@ -215,7 +212,7 @@ void BasicRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
{
|
||||
if (!forward_heap.Empty())
|
||||
{
|
||||
RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
middle,
|
||||
@ -228,7 +225,7 @@ void BasicRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
}
|
||||
if (!reverse_heap.Empty())
|
||||
{
|
||||
RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
reverse_heap,
|
||||
forward_heap,
|
||||
middle,
|
||||
@ -260,7 +257,7 @@ void BasicRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
}
|
||||
else
|
||||
{
|
||||
RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg);
|
||||
retrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg);
|
||||
}
|
||||
}
|
||||
|
||||
@ -273,7 +270,7 @@ void BasicRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
// && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
|
||||
// requires
|
||||
// a force loop, if the heaps have been initialized with positive offsets.
|
||||
void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
void searchWithCore(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
SearchEngineData::QueryHeap &forward_core_heap,
|
||||
@ -282,7 +279,7 @@ void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
std::vector<NodeID> &packed_leg,
|
||||
const bool force_loop_forward,
|
||||
const bool force_loop_reverse,
|
||||
EdgeWeight weight_upper_bound) const
|
||||
EdgeWeight weight_upper_bound)
|
||||
{
|
||||
NodeID middle = SPECIAL_NODEID;
|
||||
weight = weight_upper_bound;
|
||||
@ -310,7 +307,7 @@ void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
}
|
||||
else
|
||||
{
|
||||
RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
middle,
|
||||
@ -332,7 +329,7 @@ void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
}
|
||||
else
|
||||
{
|
||||
RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
reverse_heap,
|
||||
forward_heap,
|
||||
middle,
|
||||
@ -385,7 +382,7 @@ void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
while (0 < forward_core_heap.Size() && 0 < reverse_core_heap.Size() &&
|
||||
weight > (forward_core_heap.MinKey() + reverse_core_heap.MinKey()))
|
||||
{
|
||||
RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
forward_core_heap,
|
||||
reverse_core_heap,
|
||||
middle,
|
||||
@ -396,7 +393,7 @@ void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
force_loop_forward,
|
||||
force_loop_reverse);
|
||||
|
||||
RoutingStep(facade,
|
||||
routingStep(facade,
|
||||
reverse_core_heap,
|
||||
forward_core_heap,
|
||||
middle,
|
||||
@ -432,13 +429,13 @@ void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
else
|
||||
{
|
||||
std::vector<NodeID> packed_core_leg;
|
||||
RetrievePackedPathFromHeap(
|
||||
retrievePackedPathFromHeap(
|
||||
forward_core_heap, reverse_core_heap, middle, packed_core_leg);
|
||||
BOOST_ASSERT(packed_core_leg.size() > 0);
|
||||
RetrievePackedPathFromSingleHeap(forward_heap, packed_core_leg.front(), packed_leg);
|
||||
retrievePackedPathFromSingleHeap(forward_heap, packed_core_leg.front(), packed_leg);
|
||||
std::reverse(packed_leg.begin(), packed_leg.end());
|
||||
packed_leg.insert(packed_leg.end(), packed_core_leg.begin(), packed_core_leg.end());
|
||||
RetrievePackedPathFromSingleHeap(reverse_heap, packed_core_leg.back(), packed_leg);
|
||||
retrievePackedPathFromSingleHeap(reverse_heap, packed_core_leg.back(), packed_leg);
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -453,13 +450,12 @@ void BasicRouting<algorithm::CH>::SearchWithCore(const FacadeT &facade,
|
||||
}
|
||||
else
|
||||
{
|
||||
RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg);
|
||||
retrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool BasicRouting<algorithm::CH>::NeedsLoopForward(const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom) const
|
||||
bool needsLoopForward(const PhantomNode &source_phantom, const PhantomNode &target_phantom)
|
||||
{
|
||||
return source_phantom.forward_segment_id.enabled && target_phantom.forward_segment_id.enabled &&
|
||||
source_phantom.forward_segment_id.id == target_phantom.forward_segment_id.id &&
|
||||
@ -467,8 +463,7 @@ bool BasicRouting<algorithm::CH>::NeedsLoopForward(const PhantomNode &source_pha
|
||||
target_phantom.GetForwardWeightPlusOffset();
|
||||
}
|
||||
|
||||
bool BasicRouting<algorithm::CH>::NeedsLoopBackwards(const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom) const
|
||||
bool needsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &target_phantom)
|
||||
{
|
||||
return source_phantom.reverse_segment_id.enabled && target_phantom.reverse_segment_id.enabled &&
|
||||
source_phantom.reverse_segment_id.id == target_phantom.reverse_segment_id.id &&
|
||||
@ -476,16 +471,16 @@ bool BasicRouting<algorithm::CH>::NeedsLoopBackwards(const PhantomNode &source_p
|
||||
target_phantom.GetReverseWeightPlusOffset();
|
||||
}
|
||||
|
||||
double BasicRouting<algorithm::CH>::GetPathDistance(const FacadeT &facade,
|
||||
double getPathDistance(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<NodeID> &packed_path,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom) const
|
||||
const PhantomNode &target_phantom)
|
||||
{
|
||||
std::vector<PathData> unpacked_path;
|
||||
PhantomNodes nodes;
|
||||
nodes.source_phantom = source_phantom;
|
||||
nodes.target_phantom = target_phantom;
|
||||
UnpackPath(facade, packed_path.begin(), packed_path.end(), nodes, unpacked_path);
|
||||
unpackPath(facade, packed_path.begin(), packed_path.end(), nodes, unpacked_path);
|
||||
|
||||
using util::coordinate_calculation::detail::DEGREE_TO_RAD;
|
||||
using util::coordinate_calculation::detail::EARTH_RADIUS;
|
||||
@ -535,15 +530,15 @@ double BasicRouting<algorithm::CH>::GetPathDistance(const FacadeT &facade,
|
||||
// Requires the heaps for be empty
|
||||
// If heaps should be adjusted to be initialized outside of this function,
|
||||
// the addition of force_loop parameters might be required
|
||||
double BasicRouting<algorithm::CH>::GetNetworkDistanceWithCore(
|
||||
const FacadeT &facade,
|
||||
double getNetworkDistanceWithCore(
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
SearchEngineData::QueryHeap &forward_core_heap,
|
||||
SearchEngineData::QueryHeap &reverse_core_heap,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom,
|
||||
EdgeWeight weight_upper_bound) const
|
||||
EdgeWeight weight_upper_bound)
|
||||
{
|
||||
BOOST_ASSERT(forward_heap.Empty());
|
||||
BOOST_ASSERT(reverse_heap.Empty());
|
||||
@ -579,7 +574,7 @@ double BasicRouting<algorithm::CH>::GetNetworkDistanceWithCore(
|
||||
|
||||
EdgeWeight weight = INVALID_EDGE_WEIGHT;
|
||||
std::vector<NodeID> packed_path;
|
||||
SearchWithCore(facade,
|
||||
searchWithCore(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
forward_core_heap,
|
||||
@ -593,7 +588,7 @@ double BasicRouting<algorithm::CH>::GetNetworkDistanceWithCore(
|
||||
double distance = std::numeric_limits<double>::max();
|
||||
if (weight != INVALID_EDGE_WEIGHT)
|
||||
{
|
||||
return GetPathDistance(facade, packed_path, source_phantom, target_phantom);
|
||||
return getPathDistance(facade, packed_path, source_phantom, target_phantom);
|
||||
}
|
||||
return distance;
|
||||
}
|
||||
@ -601,12 +596,13 @@ double BasicRouting<algorithm::CH>::GetNetworkDistanceWithCore(
|
||||
// Requires the heaps for be empty
|
||||
// If heaps should be adjusted to be initialized outside of this function,
|
||||
// the addition of force_loop parameters might be required
|
||||
double BasicRouting<algorithm::CH>::GetNetworkDistance(const FacadeT &facade,
|
||||
double
|
||||
getNetworkDistance(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
SearchEngineData::QueryHeap &forward_heap,
|
||||
SearchEngineData::QueryHeap &reverse_heap,
|
||||
const PhantomNode &source_phantom,
|
||||
const PhantomNode &target_phantom,
|
||||
EdgeWeight weight_upper_bound) const
|
||||
EdgeWeight weight_upper_bound)
|
||||
{
|
||||
BOOST_ASSERT(forward_heap.Empty());
|
||||
BOOST_ASSERT(reverse_heap.Empty());
|
||||
@ -642,7 +638,7 @@ double BasicRouting<algorithm::CH>::GetNetworkDistance(const FacadeT &facade,
|
||||
|
||||
EdgeWeight weight = INVALID_EDGE_WEIGHT;
|
||||
std::vector<NodeID> packed_path;
|
||||
Search(facade,
|
||||
search(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
weight,
|
||||
@ -656,7 +652,7 @@ double BasicRouting<algorithm::CH>::GetNetworkDistance(const FacadeT &facade,
|
||||
return std::numeric_limits<double>::max();
|
||||
}
|
||||
|
||||
return GetPathDistance(facade, packed_path, source_phantom, target_phantom);
|
||||
return getPathDistance(facade, packed_path, source_phantom, target_phantom);
|
||||
}
|
||||
|
||||
} // namespace routing_algorithms
|
||||
|
@ -1,4 +1,9 @@
|
||||
#include "engine/routing_algorithms/shortest_path.hpp"
|
||||
#include "engine/routing_algorithms/routing_base.hpp"
|
||||
|
||||
#include <boost/assert.hpp>
|
||||
#include <boost/optional.hpp>
|
||||
#include <memory>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
@ -7,9 +12,12 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
const static constexpr bool DO_NOT_FORCE_LOOP = false;
|
||||
using QueryHeap = SearchEngineData::QueryHeap;
|
||||
|
||||
// allows a uturn at the target_phantom
|
||||
// searches source forward/reverse -> target forward/reverse
|
||||
void ShortestPathRouting<algorithm::CH>::SearchWithUTurn(const FacadeT &facade,
|
||||
void searchWithUTurn(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
QueryHeap &forward_heap,
|
||||
QueryHeap &reverse_heap,
|
||||
QueryHeap &forward_core_heap,
|
||||
@ -23,7 +31,7 @@ void ShortestPathRouting<algorithm::CH>::SearchWithUTurn(const FacadeT &facade,
|
||||
const int total_weight_to_forward,
|
||||
const int total_weight_to_reverse,
|
||||
int &new_total_weight,
|
||||
std::vector<NodeID> &leg_packed_path) const
|
||||
std::vector<NodeID> &leg_packed_path)
|
||||
{
|
||||
forward_heap.Clear();
|
||||
reverse_heap.Clear();
|
||||
@ -59,17 +67,16 @@ void ShortestPathRouting<algorithm::CH>::SearchWithUTurn(const FacadeT &facade,
|
||||
auto is_oneway_source = !(search_from_forward_node && search_from_reverse_node);
|
||||
auto is_oneway_target = !(search_to_forward_node && search_to_reverse_node);
|
||||
// we only enable loops here if we can't search from forward to backward node
|
||||
auto needs_loop_forwad =
|
||||
is_oneway_source && super::NeedsLoopForward(source_phantom, target_phantom);
|
||||
auto needs_loop_forwad = is_oneway_source && needsLoopForward(source_phantom, target_phantom);
|
||||
auto needs_loop_backwards =
|
||||
is_oneway_target && super::NeedsLoopBackwards(source_phantom, target_phantom);
|
||||
is_oneway_target && needsLoopBackwards(source_phantom, target_phantom);
|
||||
if (facade.GetCoreSize() > 0)
|
||||
{
|
||||
forward_core_heap.Clear();
|
||||
reverse_core_heap.Clear();
|
||||
BOOST_ASSERT(forward_core_heap.Size() == 0);
|
||||
BOOST_ASSERT(reverse_core_heap.Size() == 0);
|
||||
super::SearchWithCore(facade,
|
||||
searchWithCore(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
forward_core_heap,
|
||||
@ -81,7 +88,7 @@ void ShortestPathRouting<algorithm::CH>::SearchWithUTurn(const FacadeT &facade,
|
||||
}
|
||||
else
|
||||
{
|
||||
super::Search(facade,
|
||||
search(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
new_total_weight,
|
||||
@ -99,7 +106,7 @@ void ShortestPathRouting<algorithm::CH>::SearchWithUTurn(const FacadeT &facade,
|
||||
// searches shortest path between:
|
||||
// source forward/reverse -> target forward
|
||||
// source forward/reverse -> target reverse
|
||||
void ShortestPathRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
void Search(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
QueryHeap &forward_heap,
|
||||
QueryHeap &reverse_heap,
|
||||
QueryHeap &forward_core_heap,
|
||||
@ -115,7 +122,7 @@ void ShortestPathRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
int &new_total_weight_to_forward,
|
||||
int &new_total_weight_to_reverse,
|
||||
std::vector<NodeID> &leg_packed_path_forward,
|
||||
std::vector<NodeID> &leg_packed_path_reverse) const
|
||||
std::vector<NodeID> &leg_packed_path_reverse)
|
||||
{
|
||||
if (search_to_forward_node)
|
||||
{
|
||||
@ -148,24 +155,24 @@ void ShortestPathRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
reverse_core_heap.Clear();
|
||||
BOOST_ASSERT(forward_core_heap.Size() == 0);
|
||||
BOOST_ASSERT(reverse_core_heap.Size() == 0);
|
||||
super::SearchWithCore(facade,
|
||||
searchWithCore(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
forward_core_heap,
|
||||
reverse_core_heap,
|
||||
new_total_weight_to_forward,
|
||||
leg_packed_path_forward,
|
||||
super::NeedsLoopForward(source_phantom, target_phantom),
|
||||
needsLoopForward(source_phantom, target_phantom),
|
||||
DO_NOT_FORCE_LOOP);
|
||||
}
|
||||
else
|
||||
{
|
||||
super::Search(facade,
|
||||
search(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
new_total_weight_to_forward,
|
||||
leg_packed_path_forward,
|
||||
super::NeedsLoopForward(source_phantom, target_phantom),
|
||||
needsLoopForward(source_phantom, target_phantom),
|
||||
DO_NOT_FORCE_LOOP);
|
||||
}
|
||||
}
|
||||
@ -199,7 +206,7 @@ void ShortestPathRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
reverse_core_heap.Clear();
|
||||
BOOST_ASSERT(forward_core_heap.Size() == 0);
|
||||
BOOST_ASSERT(reverse_core_heap.Size() == 0);
|
||||
super::SearchWithCore(facade,
|
||||
searchWithCore(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
forward_core_heap,
|
||||
@ -207,28 +214,27 @@ void ShortestPathRouting<algorithm::CH>::Search(const FacadeT &facade,
|
||||
new_total_weight_to_reverse,
|
||||
leg_packed_path_reverse,
|
||||
DO_NOT_FORCE_LOOP,
|
||||
super::NeedsLoopBackwards(source_phantom, target_phantom));
|
||||
needsLoopBackwards(source_phantom, target_phantom));
|
||||
}
|
||||
else
|
||||
{
|
||||
super::Search(facade,
|
||||
search(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
new_total_weight_to_reverse,
|
||||
leg_packed_path_reverse,
|
||||
DO_NOT_FORCE_LOOP,
|
||||
super::NeedsLoopBackwards(source_phantom, target_phantom));
|
||||
needsLoopBackwards(source_phantom, target_phantom));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ShortestPathRouting<algorithm::CH>::UnpackLegs(
|
||||
const FacadeT &facade,
|
||||
void unpackLegs(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector,
|
||||
const std::vector<NodeID> &total_packed_path,
|
||||
const std::vector<std::size_t> &packed_leg_begin,
|
||||
const int shortest_path_length,
|
||||
InternalRouteResult &raw_route_data) const
|
||||
InternalRouteResult &raw_route_data)
|
||||
{
|
||||
raw_route_data.unpacked_path_segments.resize(packed_leg_begin.size() - 1);
|
||||
|
||||
@ -239,7 +245,7 @@ void ShortestPathRouting<algorithm::CH>::UnpackLegs(
|
||||
auto leg_begin = total_packed_path.begin() + packed_leg_begin[current_leg];
|
||||
auto leg_end = total_packed_path.begin() + packed_leg_begin[current_leg + 1];
|
||||
const auto &unpack_phantom_node_pair = phantom_nodes_vector[current_leg];
|
||||
super::UnpackPath(facade,
|
||||
unpackPath(facade,
|
||||
leg_begin,
|
||||
leg_end,
|
||||
unpack_phantom_node_pair,
|
||||
@ -253,12 +259,13 @@ void ShortestPathRouting<algorithm::CH>::UnpackLegs(
|
||||
}
|
||||
}
|
||||
|
||||
void ShortestPathRouting<algorithm::CH>::
|
||||
operator()(const FacadeT &facade,
|
||||
InternalRouteResult
|
||||
shortestPathSearch(SearchEngineData &engine_working_data,
|
||||
const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<PhantomNodes> &phantom_nodes_vector,
|
||||
const boost::optional<bool> continue_straight_at_waypoint,
|
||||
InternalRouteResult &raw_route_data) const
|
||||
const boost::optional<bool> continue_straight_at_waypoint)
|
||||
{
|
||||
InternalRouteResult raw_route_data;
|
||||
const bool allow_uturn_at_waypoint =
|
||||
!(continue_straight_at_waypoint ? *continue_straight_at_waypoint
|
||||
: facade.GetContinueStraightDefault());
|
||||
@ -312,7 +319,7 @@ operator()(const FacadeT &facade,
|
||||
{
|
||||
if (allow_uturn_at_waypoint)
|
||||
{
|
||||
SearchWithUTurn(facade,
|
||||
searchWithUTurn(facade,
|
||||
forward_heap,
|
||||
reverse_heap,
|
||||
forward_core_heap,
|
||||
@ -370,7 +377,7 @@ operator()(const FacadeT &facade,
|
||||
{
|
||||
raw_route_data.shortest_path_length = INVALID_EDGE_WEIGHT;
|
||||
raw_route_data.alternative_path_length = INVALID_EDGE_WEIGHT;
|
||||
return;
|
||||
return raw_route_data;
|
||||
}
|
||||
|
||||
// we need to figure out how the new legs connect to the previous ones
|
||||
@ -473,7 +480,7 @@ operator()(const FacadeT &facade,
|
||||
packed_leg_to_reverse_begin.push_back(total_packed_path_to_reverse.size());
|
||||
BOOST_ASSERT(packed_leg_to_reverse_begin.size() == phantom_nodes_vector.size() + 1);
|
||||
|
||||
UnpackLegs(facade,
|
||||
unpackLegs(facade,
|
||||
phantom_nodes_vector,
|
||||
total_packed_path_to_reverse,
|
||||
packed_leg_to_reverse_begin,
|
||||
@ -486,13 +493,15 @@ operator()(const FacadeT &facade,
|
||||
packed_leg_to_forward_begin.push_back(total_packed_path_to_forward.size());
|
||||
BOOST_ASSERT(packed_leg_to_forward_begin.size() == phantom_nodes_vector.size() + 1);
|
||||
|
||||
UnpackLegs(facade,
|
||||
unpackLegs(facade,
|
||||
phantom_nodes_vector,
|
||||
total_packed_path_to_forward,
|
||||
packed_leg_to_forward_begin,
|
||||
total_weight_to_forward,
|
||||
raw_route_data);
|
||||
}
|
||||
|
||||
return raw_route_data;
|
||||
}
|
||||
|
||||
} // namespace routing_algorithms
|
||||
|
@ -7,10 +7,10 @@ namespace engine
|
||||
namespace routing_algorithms
|
||||
{
|
||||
|
||||
std::vector<TurnData> TileTurns<algorithm::CH>::
|
||||
operator()(const FacadeT &facade,
|
||||
std::vector<TurnData>
|
||||
getTileTurns(const datafacade::ContiguousInternalMemoryDataFacade<algorithm::CH> &facade,
|
||||
const std::vector<RTreeLeaf> &edges,
|
||||
const std::vector<std::size_t> &sorted_edge_indexes) const
|
||||
const std::vector<std::size_t> &sorted_edge_indexes)
|
||||
{
|
||||
std::vector<TurnData> all_turn_data;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user