Fix naming in coordinate_calculation

This commit is contained in:
Patrick Niklaus 2016-01-04 13:30:03 +01:00
parent e8bc69aa01
commit 4312013552
15 changed files with 137 additions and 135 deletions

View File

@ -3,17 +3,28 @@
#include "engine/descriptors/descriptor_base.hpp"
#include "util/xml_renderer.hpp"
#include "util/string_util.hpp"
#include "osrm/json_container.hpp"
#include <iostream>
template <class DataFacadeT> class GPXDescriptor final : public BaseDescriptor<DataFacadeT>
{
private:
DescriptorConfig config;
DataFacadeT *facade;
template<std::size_t digits>
void fixedIntToString(const int value, std::string &output)
{
char buffer[digits];
buffer[digits-1] = 0; // zero termination
output = printInt<11, 6>(buffer, value);
}
void AddRoutePoint(const FixedPointCoordinate &coordinate, osrm::json::Array &json_route)
{
osrm::json::Object json_lat;
@ -22,10 +33,10 @@ template <class DataFacadeT> class GPXDescriptor final : public BaseDescriptor<D
std::string tmp;
coordinate_calculation::lat_or_lon_to_string(coordinate.lat, tmp);
fixedIntToString<12>(coordinate.lat, tmp);
json_lat.values["_lat"] = tmp;
coordinate_calculation::lat_or_lon_to_string(coordinate.lon, tmp);
fixedIntToString<12>(coordinate.lon, tmp);
json_lon.values["_lon"] = tmp;
json_row.values.push_back(json_lat);

View File

@ -133,7 +133,7 @@ template <typename RTreeT> class GeospatialQuery
{
FixedPointCoordinate point_on_segment;
double ratio;
const auto current_perpendicular_distance = coordinate_calculation::perpendicular_distance(
const auto current_perpendicular_distance = coordinate_calculation::perpendicularDistance(
coordinates->at(data.u), coordinates->at(data.v), input_coordinate, point_on_segment,
ratio);

View File

@ -76,7 +76,7 @@ template <class DataFacadeT> class MapMatchingPlugin : public BasePlugin
double query_radius = 10 * gps_precision;
double last_distance =
coordinate_calculation::haversine_distance(input_coords[0], input_coords[1]);
coordinate_calculation::haversineDistance(input_coords[0], input_coords[1]);
sub_trace_lengths.resize(input_coords.size());
sub_trace_lengths[0] = 0;
@ -85,7 +85,7 @@ template <class DataFacadeT> class MapMatchingPlugin : public BasePlugin
bool allow_uturn = false;
if (0 < current_coordinate)
{
last_distance = coordinate_calculation::haversine_distance(
last_distance = coordinate_calculation::haversineDistance(
input_coords[current_coordinate - 1], input_coords[current_coordinate]);
sub_trace_lengths[current_coordinate] +=

View File

@ -196,7 +196,7 @@ class MapMatching final : public BasicRoutingInterface<DataFacadeT, MapMatching<
const auto &current_coordinate = trace_coordinates[t];
const auto haversine_distance =
coordinate_calculation::haversine_distance(prev_coordinate, current_coordinate);
coordinate_calculation::haversineDistance(prev_coordinate, current_coordinate);
// compute d_t for this timestamp and the next one
for (const auto s : osrm::irange<std::size_t>(0u, prev_viterbi.size()))

View File

@ -648,11 +648,11 @@ template <class DataFacadeT, class Derived> class BasicRoutingInterface
for (const auto &p : unpacked_path)
{
current_coordinate = facade->GetCoordinateOfNode(p.node);
distance += coordinate_calculation::haversine_distance(previous_coordinate,
distance += coordinate_calculation::haversineDistance(previous_coordinate,
current_coordinate);
previous_coordinate = current_coordinate;
}
distance += coordinate_calculation::haversine_distance(previous_coordinate,
distance += coordinate_calculation::haversineDistance(previous_coordinate,
target_phantom.location);
}
return distance;

View File

@ -8,44 +8,42 @@ struct FixedPointCoordinate;
namespace coordinate_calculation
{
double haversine_distance(const int lat1, const int lon1, const int lat2, const int lon2);
double haversineDistance(const int lat1, const int lon1, const int lat2, const int lon2);
double haversine_distance(const FixedPointCoordinate &first_coordinate,
const FixedPointCoordinate &second_coordinate);
double haversineDistance(const FixedPointCoordinate &first_coordinate,
const FixedPointCoordinate &second_coordinate);
double great_circle_distance(const FixedPointCoordinate &first_coordinate,
const FixedPointCoordinate &second_coordinate);
double greatCircleDistance(const FixedPointCoordinate &first_coordinate,
const FixedPointCoordinate &second_coordinate);
double great_circle_distance(const int lat1, const int lon1, const int lat2, const int lon2);
double greatCircleDistance(const int lat1, const int lon1, const int lat2, const int lon2);
void lat_or_lon_to_string(const int value, std::string &output);
double perpendicularDistance(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location);
double perpendicular_distance(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location);
double perpendicularDistance(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
FixedPointCoordinate &nearest_location,
double &ratio);
double perpendicular_distance(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
FixedPointCoordinate &nearest_location,
double &ratio);
double
perpendicularDistanceFromProjectedCoordinate(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate);
double perpendicular_distance_from_projected_coordinate(
const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate);
double
perpendicularDistanceFromProjectedCoordinate(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate,
FixedPointCoordinate &nearest_location,
double &ratio);
double perpendicular_distance_from_projected_coordinate(
const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate,
FixedPointCoordinate &nearest_location,
double &ratio);
double deg_to_rad(const double degree);
double rad_to_deg(const double radian);
double degToRad(const double degree);
double radToDeg(const double radian);
double bearing(const FixedPointCoordinate &first_coordinate,
const FixedPointCoordinate &second_coordinate);

View File

@ -94,35 +94,35 @@ struct RectangleInt2D
switch (d)
{
case NORTH:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(max_lat, location.lon));
break;
case SOUTH:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(min_lat, location.lon));
break;
case WEST:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(location.lat, min_lon));
break;
case EAST:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(location.lat, max_lon));
break;
case NORTH_EAST:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(max_lat, max_lon));
break;
case NORTH_WEST:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(max_lat, min_lon));
break;
case SOUTH_EAST:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(min_lat, max_lon));
break;
case SOUTH_WEST:
min_dist = coordinate_calculation::great_circle_distance(
min_dist = coordinate_calculation::greatCircleDistance(
location, FixedPointCoordinate(min_lat, min_lon));
break;
default:
@ -145,23 +145,23 @@ struct RectangleInt2D
min_max_dist = std::min(
min_max_dist,
std::max(coordinate_calculation::great_circle_distance(location, upper_left),
coordinate_calculation::great_circle_distance(location, upper_right)));
std::max(coordinate_calculation::greatCircleDistance(location, upper_left),
coordinate_calculation::greatCircleDistance(location, upper_right)));
min_max_dist = std::min(
min_max_dist,
std::max(coordinate_calculation::great_circle_distance(location, upper_right),
coordinate_calculation::great_circle_distance(location, lower_right)));
std::max(coordinate_calculation::greatCircleDistance(location, upper_right),
coordinate_calculation::greatCircleDistance(location, lower_right)));
min_max_dist =
std::min(min_max_dist,
std::max(coordinate_calculation::great_circle_distance(location, lower_right),
coordinate_calculation::great_circle_distance(location, lower_left)));
std::max(coordinate_calculation::greatCircleDistance(location, lower_right),
coordinate_calculation::greatCircleDistance(location, lower_left)));
min_max_dist =
std::min(min_max_dist,
std::max(coordinate_calculation::great_circle_distance(location, lower_left),
coordinate_calculation::great_circle_distance(location, upper_left)));
std::max(coordinate_calculation::greatCircleDistance(location, lower_left),
coordinate_calculation::greatCircleDistance(location, upper_left)));
return min_max_dist;
}

View File

@ -415,7 +415,7 @@ class StaticRTree
{
auto &current_edge = current_leaf_node.objects[i];
const float current_perpendicular_distance =
coordinate_calculation::perpendicular_distance_from_projected_coordinate(
coordinate_calculation::perpendicularDistanceFromProjectedCoordinate(
m_coordinate_list->at(current_edge.u), m_coordinate_list->at(current_edge.v),
input_coordinate, projected_coordinate);
// distance must be non-negative

View File

@ -100,7 +100,7 @@ void DescriptionFactory::Run(const unsigned zoom_level)
{
// move down names by one, q&d hack
path_description[i - 1].name_id = path_description[i].name_id;
path_description[i].length = coordinate_calculation::great_circle_distance(
path_description[i].length = coordinate_calculation::greatCircleDistance(
path_description[i - 1].location, path_description[i].location);
}

View File

@ -541,7 +541,7 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
const QueryNode &from = m_node_info_list[previous];
const QueryNode &to = m_node_info_list[target_node.first];
const double segment_length =
coordinate_calculation::great_circle_distance(from.lat, from.lon,
coordinate_calculation::greatCircleDistance(from.lat, from.lon,
to.lat, to.lon);
edge_segment_file.write(reinterpret_cast<const char *>(&to.node_id),
@ -559,7 +559,7 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
static const unsigned node_count = 2;
const QueryNode from = m_node_info_list[node_u];
const QueryNode to = m_node_info_list[node_v];
const double segment_length = coordinate_calculation::great_circle_distance(
const double segment_length = coordinate_calculation::greatCircleDistance(
from.lat, from.lon, to.lat, to.lon);
edge_segment_file.write(reinterpret_cast<const char *>(&node_count),
sizeof(node_count));

View File

@ -302,7 +302,7 @@ void ExtractionContainers::PrepareEdges(lua_State *segment_state)
BOOST_ASSERT(edge_iterator->source_coordinate.lat != std::numeric_limits<int>::min());
BOOST_ASSERT(edge_iterator->source_coordinate.lon != std::numeric_limits<int>::min());
const double distance = coordinate_calculation::great_circle_distance(
const double distance = coordinate_calculation::greatCircleDistance(
edge_iterator->source_coordinate.lat, edge_iterator->source_coordinate.lon,
node_iterator->lat, node_iterator->lon);

View File

@ -177,7 +177,7 @@ int main(int argc, char *argv[])
if (source < target || SPECIAL_EDGEID == graph->FindEdge(target, source))
{
total_network_length +=
100 * coordinate_calculation::great_circle_distance(
100 * coordinate_calculation::greatCircleDistance(
coordinate_list[source].lat, coordinate_list[source].lon,
coordinate_list[target].lat, coordinate_list[target].lon);

View File

@ -22,7 +22,7 @@ constexpr static const double earth_radius = 6372797.560856;
namespace coordinate_calculation
{
double haversine_distance(const int lat1, const int lon1, const int lat2, const int lon2)
double haversineDistance(const int lat1, const int lon1, const int lat2, const int lon2)
{
BOOST_ASSERT(lat1 != std::numeric_limits<int>::min());
BOOST_ASSERT(lon1 != std::numeric_limits<int>::min());
@ -38,30 +38,30 @@ double haversine_distance(const int lat1, const int lon1, const int lat2, const
const double dlat2 = lt2 * (RAD);
const double dlong2 = ln2 * (RAD);
const double dLong = dlong1 - dlong2;
const double dLat = dlat1 - dlat2;
const double dlong = dlong1 - dlong2;
const double dlat = dlat1 - dlat2;
const double aHarv = std::pow(std::sin(dLat / 2.0), 2.0) +
std::cos(dlat1) * std::cos(dlat2) * std::pow(std::sin(dLong / 2.), 2);
const double cHarv = 2. * std::atan2(std::sqrt(aHarv), std::sqrt(1.0 - aHarv));
return earth_radius * cHarv;
const double aharv = std::pow(std::sin(dlat / 2.0), 2.0) +
std::cos(dlat1) * std::cos(dlat2) * std::pow(std::sin(dlong / 2.), 2);
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
return earth_radius * charv;
}
double haversine_distance(const FixedPointCoordinate &coordinate_1,
const FixedPointCoordinate &coordinate_2)
double haversineDistance(const FixedPointCoordinate &coordinate_1,
const FixedPointCoordinate &coordinate_2)
{
return haversine_distance(coordinate_1.lat, coordinate_1.lon, coordinate_2.lat,
coordinate_2.lon);
return haversineDistance(coordinate_1.lat, coordinate_1.lon, coordinate_2.lat,
coordinate_2.lon);
}
double great_circle_distance(const FixedPointCoordinate &coordinate_1,
const FixedPointCoordinate &coordinate_2)
double greatCircleDistance(const FixedPointCoordinate &coordinate_1,
const FixedPointCoordinate &coordinate_2)
{
return great_circle_distance(coordinate_1.lat, coordinate_1.lon, coordinate_2.lat,
coordinate_2.lon);
return greatCircleDistance(coordinate_1.lat, coordinate_1.lon, coordinate_2.lat,
coordinate_2.lon);
}
double great_circle_distance(const int lat1, const int lon1, const int lat2, const int lon2)
double greatCircleDistance(const int lat1, const int lon1, const int lat2, const int lon2)
{
BOOST_ASSERT(lat1 != std::numeric_limits<int>::min());
BOOST_ASSERT(lon1 != std::numeric_limits<int>::min());
@ -78,51 +78,51 @@ double great_circle_distance(const int lat1, const int lon1, const int lat2, con
return std::hypot(x_value, y_value) * earth_radius;
}
double perpendicular_distance(const FixedPointCoordinate &source_coordinate,
const FixedPointCoordinate &target_coordinate,
const FixedPointCoordinate &query_location)
double perpendicularDistance(const FixedPointCoordinate &source_coordinate,
const FixedPointCoordinate &target_coordinate,
const FixedPointCoordinate &query_location)
{
double ratio;
FixedPointCoordinate nearest_location;
return perpendicular_distance(source_coordinate, target_coordinate, query_location,
nearest_location, ratio);
return perpendicularDistance(source_coordinate, target_coordinate, query_location,
nearest_location, ratio);
}
double perpendicular_distance(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
FixedPointCoordinate &nearest_location,
double &ratio)
double perpendicularDistance(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
FixedPointCoordinate &nearest_location,
double &ratio)
{
return perpendicular_distance_from_projected_coordinate(
return perpendicularDistanceFromProjectedCoordinate(
segment_source, segment_target, query_location,
{mercator::lat2y(query_location.lat / COORDINATE_PRECISION),
query_location.lon / COORDINATE_PRECISION},
nearest_location, ratio);
}
double perpendicular_distance_from_projected_coordinate(
const FixedPointCoordinate &source_coordinate,
const FixedPointCoordinate &target_coordinate,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate)
double
perpendicularDistanceFromProjectedCoordinate(const FixedPointCoordinate &source_coordinate,
const FixedPointCoordinate &target_coordinate,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate)
{
double ratio;
FixedPointCoordinate nearest_location;
return perpendicular_distance_from_projected_coordinate(source_coordinate, target_coordinate,
query_location, projected_coordinate,
nearest_location, ratio);
return perpendicularDistanceFromProjectedCoordinate(source_coordinate, target_coordinate,
query_location, projected_coordinate,
nearest_location, ratio);
}
double perpendicular_distance_from_projected_coordinate(
const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate,
FixedPointCoordinate &nearest_location,
double &ratio)
double
perpendicularDistanceFromProjectedCoordinate(const FixedPointCoordinate &segment_source,
const FixedPointCoordinate &segment_target,
const FixedPointCoordinate &query_location,
const std::pair<double, double> &projected_coordinate,
FixedPointCoordinate &nearest_location,
double &ratio)
{
BOOST_ASSERT(query_location.is_valid());
@ -133,7 +133,7 @@ double perpendicular_distance_from_projected_coordinate(
const double b = segment_source.lon / COORDINATE_PRECISION;
const double c = mercator::lat2y(segment_target.lat / COORDINATE_PRECISION);
const double d = segment_target.lon / COORDINATE_PRECISION;
double p, q /*,mX*/, nY;
double p, q /*,mX*/, new_y;
if (std::abs(a - c) > std::numeric_limits<double>::epsilon())
{
const double m = (d - b) / (c - a); // slope
@ -146,16 +146,16 @@ double perpendicular_distance_from_projected_coordinate(
p = c;
q = y;
}
nY = (d * p - c * q) / (a * d - b * c);
new_y = (d * p - c * q) / (a * d - b * c);
// discretize the result to coordinate precision. it's a hack!
if (std::abs(nY) < (1.0 / COORDINATE_PRECISION))
if (std::abs(new_y) < (1.0 / COORDINATE_PRECISION))
{
nY = 0.0;
new_y = 0.0;
}
// compute ratio
ratio = static_cast<double>((p - nY * a) /
ratio = static_cast<double>((p - new_y * a) /
c); // These values are actually n/m+n and m/m+n , we need
// not calculate the explicit values of m an n as we
// are just interested in the ratio
@ -190,34 +190,27 @@ double perpendicular_distance_from_projected_coordinate(
}
BOOST_ASSERT(nearest_location.is_valid());
const double approximate_distance = great_circle_distance(query_location, nearest_location);
const double approximate_distance = greatCircleDistance(query_location, nearest_location);
BOOST_ASSERT(0.0 <= approximate_distance);
return approximate_distance;
}
void lat_or_lon_to_string(const int value, std::string &output)
{
char buffer[12];
buffer[11] = 0; // zero termination
output = printInt<11, 6>(buffer, value);
}
double degToRad(const double degree) { return degree * (static_cast<double>(M_PI) / 180.0); }
double deg_to_rad(const double degree) { return degree * (static_cast<double>(M_PI) / 180.0); }
double rad_to_deg(const double radian) { return radian * (180.0 * static_cast<double>(M_1_PI)); }
double radToDeg(const double radian) { return radian * (180.0 * static_cast<double>(M_1_PI)); }
double bearing(const FixedPointCoordinate &first_coordinate,
const FixedPointCoordinate &second_coordinate)
{
const double lon_diff =
second_coordinate.lon / COORDINATE_PRECISION - first_coordinate.lon / COORDINATE_PRECISION;
const double lon_delta = deg_to_rad(lon_diff);
const double lat1 = deg_to_rad(first_coordinate.lat / COORDINATE_PRECISION);
const double lat2 = deg_to_rad(second_coordinate.lat / COORDINATE_PRECISION);
const double lon_delta = degToRad(lon_diff);
const double lat1 = degToRad(first_coordinate.lat / COORDINATE_PRECISION);
const double lat2 = degToRad(second_coordinate.lat / COORDINATE_PRECISION);
const double y = std::sin(lon_delta) * std::cos(lat2);
const double x =
std::cos(lat1) * std::sin(lat2) - std::sin(lat1) * std::cos(lat2) * std::cos(lon_delta);
double result = rad_to_deg(std::atan2(y, x));
double result = radToDeg(std::atan2(y, x));
while (result < 0.0)
{
result += 360.0;

View File

@ -13,11 +13,11 @@ BOOST_AUTO_TEST_CASE(regression_test_1347)
FixedPointCoordinate v(10.001 * COORDINATE_PRECISION, -100.002 * COORDINATE_PRECISION);
FixedPointCoordinate q(10.002 * COORDINATE_PRECISION, -100.001 * COORDINATE_PRECISION);
double d1 = coordinate_calculation::perpendicular_distance(u, v, q);
double d1 = coordinate_calculation::perpendicularDistance(u, v, q);
double ratio;
FixedPointCoordinate nearest_location;
double d2 = coordinate_calculation::perpendicular_distance(u, v, q, nearest_location, ratio);
double d2 = coordinate_calculation::perpendicularDistance(u, v, q, nearest_location, ratio);
BOOST_CHECK_LE(std::abs(d1 - d2), 0.01);
}

View File

@ -63,9 +63,9 @@ template <typename DataT> class LinearSearchNN
{
double current_ratio = 0.;
FixedPointCoordinate nearest;
const double lhs_dist = coordinate_calculation::perpendicular_distance(
const double lhs_dist = coordinate_calculation::perpendicularDistance(
coords->at(lhs.u), coords->at(lhs.v), input_coordinate, nearest, current_ratio);
const double rhs_dist = coordinate_calculation::perpendicular_distance(
const double rhs_dist = coordinate_calculation::perpendicularDistance(
coords->at(rhs.u), coords->at(rhs.v), input_coordinate, nearest, current_ratio);
return lhs_dist < rhs_dist;
});
@ -231,9 +231,9 @@ void sampling_verify_rtree(RTreeT &rtree,
double current_ratio = 0.;
FixedPointCoordinate nearest;
const double rtree_dist = coordinate_calculation::perpendicular_distance(
const double rtree_dist = coordinate_calculation::perpendicularDistance(
coords[rtree_u], coords[rtree_v], q, nearest, current_ratio);
const double lsnn_dist = coordinate_calculation::perpendicular_distance(
const double lsnn_dist = coordinate_calculation::perpendicularDistance(
coords[lsnn_u], coords[lsnn_v], q, nearest, current_ratio);
BOOST_CHECK_LE(std::abs(rtree_dist - lsnn_dist), std::numeric_limits<double>::epsilon());
}
@ -358,30 +358,30 @@ void TestRectangle(double width, double height, double center_lat, double center
/* Distance to line segments of rectangle */
BOOST_CHECK_EQUAL(rect.GetMinDist(north),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
north, FixedPointCoordinate(rect.max_lat, north.lon)));
BOOST_CHECK_EQUAL(rect.GetMinDist(south),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
south, FixedPointCoordinate(rect.min_lat, south.lon)));
BOOST_CHECK_EQUAL(rect.GetMinDist(west),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
west, FixedPointCoordinate(west.lat, rect.min_lon)));
BOOST_CHECK_EQUAL(rect.GetMinDist(east),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
east, FixedPointCoordinate(east.lat, rect.max_lon)));
/* Distance to corner points */
BOOST_CHECK_EQUAL(rect.GetMinDist(north_east),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
north_east, FixedPointCoordinate(rect.max_lat, rect.max_lon)));
BOOST_CHECK_EQUAL(rect.GetMinDist(north_west),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
north_west, FixedPointCoordinate(rect.max_lat, rect.min_lon)));
BOOST_CHECK_EQUAL(rect.GetMinDist(south_east),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
south_east, FixedPointCoordinate(rect.min_lat, rect.max_lon)));
BOOST_CHECK_EQUAL(rect.GetMinDist(south_west),
coordinate_calculation::great_circle_distance(
coordinate_calculation::greatCircleDistance(
south_west, FixedPointCoordinate(rect.min_lat, rect.min_lon)));
}