Move leg search to routing base

This commit is contained in:
Patrick Niklaus 2015-11-25 21:45:09 +01:00
parent 9005fe2f61
commit 4206d98b55
5 changed files with 262 additions and 148 deletions

View File

@ -64,143 +64,39 @@ class DirectShortestPathRouting final
{ {
(void)uturn_indicators; // unused (void)uturn_indicators; // unused
engine_working_data.InitializeOrClearFirstThreadLocalStorage(
super::facade->GetNumberOfNodes());
engine_working_data.InitializeOrClearSecondThreadLocalStorage(
super::facade->GetNumberOfNodes());
QueryHeap &forward_heap = *(engine_working_data.forward_heap_1);
QueryHeap &reverse_heap = *(engine_working_data.reverse_heap_1);
QueryHeap &forward_core_heap = *(engine_working_data.forward_heap_2);
QueryHeap &reverse_core_heap = *(engine_working_data.reverse_heap_2);
// Get distance to next pair of target nodes. // Get distance to next pair of target nodes.
BOOST_ASSERT_MSG(1 == phantom_nodes_vector.size(), BOOST_ASSERT_MSG(1 == phantom_nodes_vector.size(),
"Direct Shortest Path Query only accepts a single source and target pair. Multiple ones have been specified."); "Direct Shortest Path Query only accepts a single source and target pair. Multiple ones have been specified.");
const auto& phantom_node_pair = phantom_nodes_vector.front(); const auto& phantom_node_pair = phantom_nodes_vector.front();
engine_working_data.InitializeOrClearFirstThreadLocalStorage(
super::facade->GetNumberOfNodes());
QueryHeap &forward_heap = *(engine_working_data.forward_heap_1);
QueryHeap &reverse_heap = *(engine_working_data.reverse_heap_1);
forward_heap.Clear(); forward_heap.Clear();
reverse_heap.Clear(); reverse_heap.Clear();
int distance = INVALID_EDGE_WEIGHT;
NodeID middle = SPECIAL_NODEID;
const EdgeWeight min_edge_offset = int distance;
std::min(-phantom_node_pair.source_phantom.GetForwardWeightPlusOffset(), std::vector<NodeID> packed_leg;
-phantom_node_pair.source_phantom.GetReverseWeightPlusOffset());
// insert new starting nodes into forward heap, adjusted by previous distances. if (super::facade->GetCoreSize() > 0)
if (phantom_node_pair.source_phantom.forward_node_id != SPECIAL_NODEID)
{ {
forward_heap.Insert( engine_working_data.InitializeOrClearSecondThreadLocalStorage(
phantom_node_pair.source_phantom.forward_node_id, super::facade->GetNumberOfNodes());
-phantom_node_pair.source_phantom.GetForwardWeightPlusOffset(), QueryHeap &forward_core_heap = *(engine_working_data.forward_heap_2);
phantom_node_pair.source_phantom.forward_node_id); QueryHeap &reverse_core_heap = *(engine_working_data.reverse_heap_2);
forward_core_heap.Clear();
reverse_core_heap.Clear();
super::SearchWithCore(forward_heap, reverse_heap, forward_core_heap, reverse_core_heap,
phantom_node_pair.source_phantom, phantom_node_pair.target_phantom,
distance, packed_leg);
} }
if ( phantom_node_pair.source_phantom.reverse_node_id != SPECIAL_NODEID) else
{ {
forward_heap.Insert( super::Search(forward_heap, reverse_heap, phantom_node_pair.source_phantom,
phantom_node_pair.source_phantom.reverse_node_id, phantom_node_pair.target_phantom, distance, packed_leg);
-phantom_node_pair.source_phantom.GetReverseWeightPlusOffset(),
phantom_node_pair.source_phantom.reverse_node_id);
}
// insert new backward nodes into backward heap, unadjusted.
if (phantom_node_pair.target_phantom.forward_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(phantom_node_pair.target_phantom.forward_node_id,
phantom_node_pair.target_phantom.GetForwardWeightPlusOffset(),
phantom_node_pair.target_phantom.forward_node_id);
}
if (phantom_node_pair.target_phantom.reverse_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(phantom_node_pair.target_phantom.reverse_node_id,
phantom_node_pair.target_phantom.GetReverseWeightPlusOffset(),
phantom_node_pair.target_phantom.reverse_node_id);
}
std::vector<std::pair<NodeID, EdgeWeight>> forward_entry_points;
std::vector<std::pair<NodeID, EdgeWeight>> reverse_entry_points;
// run two-Target Dijkstra routing step.
while (0 < (forward_heap.Size() + reverse_heap.Size()) )
{
if (!forward_heap.Empty())
{
if (super::facade->IsCoreNode(forward_heap.Min()))
{
const NodeID node = forward_heap.DeleteMin();
const int key = forward_heap.GetKey(node);
forward_entry_points.emplace_back(node, key);
}
else
{
super::RoutingStep(forward_heap, reverse_heap, &middle, &distance,
min_edge_offset, true);
}
}
if (!reverse_heap.Empty())
{
if (super::facade->IsCoreNode(reverse_heap.Min()))
{
const NodeID node = reverse_heap.DeleteMin();
const int key = reverse_heap.GetKey(node);
reverse_entry_points.emplace_back(node, key);
}
else
{
super::RoutingStep(reverse_heap, forward_heap, &middle, &distance,
min_edge_offset, false);
}
}
}
// TODO check if unordered_set might be faster
// sort by id and increasing by distance
auto entry_point_comparator = [](const std::pair<NodeID, EdgeWeight>& lhs, const std::pair<NodeID, EdgeWeight>& rhs)
{
return lhs.first < rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second);
};
std::sort(forward_entry_points.begin(), forward_entry_points.end(), entry_point_comparator);
std::sort(reverse_entry_points.begin(), reverse_entry_points.end(), entry_point_comparator);
NodeID last_id = SPECIAL_NODEID;
for (const auto p : forward_entry_points)
{
if (p.first == last_id)
{
continue;
}
forward_core_heap.Insert(p.first, p.second, p.first);
last_id = p.first;
}
last_id = SPECIAL_NODEID;
for (const auto p : reverse_entry_points)
{
if (p.first == last_id)
{
continue;
}
reverse_core_heap.Insert(p.first, p.second, p.first);
last_id = p.first;
}
// run two-target Dijkstra routing step on core with termination criterion
while (0 < (forward_core_heap.Size() + reverse_core_heap.Size()) &&
distance > (forward_core_heap.MinKey() + reverse_core_heap.MinKey()))
{
if (!forward_core_heap.Empty())
{
super::RoutingStep(forward_core_heap, reverse_core_heap, &middle, &distance,
min_edge_offset, true, false);
}
if (!reverse_core_heap.Empty())
{
super::RoutingStep(reverse_core_heap, forward_core_heap, &middle, &distance,
min_edge_offset, false, false);
}
} }
// No path found for both target nodes? // No path found for both target nodes?
@ -211,30 +107,9 @@ class DirectShortestPathRouting final
return; return;
} }
// Was a paths over one of the forward/reverse nodes not found?
BOOST_ASSERT_MSG((SPECIAL_NODEID == middle || INVALID_EDGE_WEIGHT != distance),
"no path found");
std::vector<NodeID> packed_leg;
// we need to unpack sub path from core heaps
if(super::facade->IsCoreNode(middle))
{
std::vector<NodeID> packed_core_leg;
super::RetrievePackedPathFromHeap(forward_core_heap, reverse_core_heap, middle, packed_core_leg);
BOOST_ASSERT(packed_core_leg.size() > 0);
super::RetrievePackedPathFromSingleHeap(forward_heap, packed_core_leg.front(), packed_leg);
std::reverse(packed_leg.begin(), packed_leg.end());
packed_leg.insert(packed_leg.end(), packed_core_leg.begin(), packed_core_leg.end());
super::RetrievePackedPathFromSingleHeap(reverse_heap, packed_core_leg.back(), packed_leg);
}
else
{
super::RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg);
}
BOOST_ASSERT_MSG(!packed_leg.empty(), "packed path empty"); BOOST_ASSERT_MSG(!packed_leg.empty(), "packed path empty");
raw_route_data.shortest_path_length = distance;
raw_route_data.unpacked_path_segments.resize(1); raw_route_data.unpacked_path_segments.resize(1);
raw_route_data.source_traversed_in_reverse.push_back( raw_route_data.source_traversed_in_reverse.push_back(
(packed_leg.front() != phantom_node_pair.source_phantom.forward_node_id)); (packed_leg.front() != phantom_node_pair.source_phantom.forward_node_id));
@ -243,7 +118,6 @@ class DirectShortestPathRouting final
super::UnpackPath(packed_leg, phantom_node_pair, raw_route_data.unpacked_path_segments.front()); super::UnpackPath(packed_leg, phantom_node_pair, raw_route_data.unpacked_path_segments.front());
raw_route_data.shortest_path_length = distance;
} }
}; };

View File

@ -416,6 +416,234 @@ template <class DataFacadeT, class Derived> class BasicRoutingInterface
} }
} }
// assumes that heaps are already setup correctly.
void Search(SearchEngineData::QueryHeap &forward_heap,
SearchEngineData::QueryHeap &reverse_heap,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom,
int &distance,
std::vector<NodeID> &packed_leg) const
{
NodeID middle = SPECIAL_NODEID;
const EdgeWeight min_edge_offset = std::min(-source_phantom.GetForwardWeightPlusOffset(),
-source_phantom.GetReverseWeightPlusOffset());
// insert new starting nodes into forward heap, adjusted by previous distances.
if (source_phantom.forward_node_id != SPECIAL_NODEID)
{
forward_heap.Insert(source_phantom.forward_node_id,
-source_phantom.GetForwardWeightPlusOffset(),
source_phantom.forward_node_id);
}
if (source_phantom.reverse_node_id != SPECIAL_NODEID)
{
forward_heap.Insert(source_phantom.reverse_node_id,
-source_phantom.GetReverseWeightPlusOffset(),
source_phantom.reverse_node_id);
}
// insert new backward nodes into backward heap, unadjusted.
if (target_phantom.forward_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(target_phantom.forward_node_id,
target_phantom.GetForwardWeightPlusOffset(),
target_phantom.forward_node_id);
}
if (target_phantom.reverse_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(target_phantom.reverse_node_id,
target_phantom.GetReverseWeightPlusOffset(),
target_phantom.reverse_node_id);
}
std::vector<std::pair<NodeID, EdgeWeight>> forward_entry_points;
std::vector<std::pair<NodeID, EdgeWeight>> reverse_entry_points;
// run two-Target Dijkstra routing step.
while (0 < (forward_heap.Size() + reverse_heap.Size()))
{
if (!forward_heap.Empty())
{
RoutingStep(forward_heap, reverse_heap, &middle, &distance, min_edge_offset,
true);
}
if (!reverse_heap.Empty())
{
RoutingStep(reverse_heap, forward_heap, &middle, &distance, min_edge_offset,
false);
}
}
// No path found for both target nodes?
if (INVALID_EDGE_WEIGHT == distance)
{
return;
}
// Was a paths over one of the forward/reverse nodes not found?
BOOST_ASSERT_MSG((SPECIAL_NODEID == middle || INVALID_EDGE_WEIGHT != distance),
"no path found");
RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg);
}
// assumes that heaps are already setup correctly.
void SearchWithCore(SearchEngineData::QueryHeap &forward_heap,
SearchEngineData::QueryHeap &reverse_heap,
SearchEngineData::QueryHeap &forward_core_heap,
SearchEngineData::QueryHeap &reverse_core_heap,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom,
int &distance,
std::vector<NodeID> &packed_leg) const
{
NodeID middle = SPECIAL_NODEID;
const EdgeWeight min_edge_offset = std::min(-source_phantom.GetForwardWeightPlusOffset(),
-source_phantom.GetReverseWeightPlusOffset());
// insert new starting nodes into forward heap, adjusted by previous distances.
if (source_phantom.forward_node_id != SPECIAL_NODEID)
{
forward_heap.Insert(source_phantom.forward_node_id,
-source_phantom.GetForwardWeightPlusOffset(),
source_phantom.forward_node_id);
}
if (source_phantom.reverse_node_id != SPECIAL_NODEID)
{
forward_heap.Insert(source_phantom.reverse_node_id,
-source_phantom.GetReverseWeightPlusOffset(),
source_phantom.reverse_node_id);
}
// insert new backward nodes into backward heap, unadjusted.
if (target_phantom.forward_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(target_phantom.forward_node_id,
target_phantom.GetForwardWeightPlusOffset(),
target_phantom.forward_node_id);
}
if (target_phantom.reverse_node_id != SPECIAL_NODEID)
{
reverse_heap.Insert(target_phantom.reverse_node_id,
target_phantom.GetReverseWeightPlusOffset(),
target_phantom.reverse_node_id);
}
std::vector<std::pair<NodeID, EdgeWeight>> forward_entry_points;
std::vector<std::pair<NodeID, EdgeWeight>> reverse_entry_points;
// run two-Target Dijkstra routing step.
while (0 < (forward_heap.Size() + reverse_heap.Size()))
{
if (!forward_heap.Empty())
{
if (facade->IsCoreNode(forward_heap.Min()))
{
const NodeID node = forward_heap.DeleteMin();
const int key = forward_heap.GetKey(node);
forward_entry_points.emplace_back(node, key);
}
else
{
RoutingStep(forward_heap, reverse_heap, &middle, &distance, min_edge_offset,
true);
}
}
if (!reverse_heap.Empty())
{
if (facade->IsCoreNode(reverse_heap.Min()))
{
const NodeID node = reverse_heap.DeleteMin();
const int key = reverse_heap.GetKey(node);
reverse_entry_points.emplace_back(node, key);
}
else
{
RoutingStep(reverse_heap, forward_heap, &middle, &distance, min_edge_offset,
false);
}
}
}
// TODO check if unordered_set might be faster
// sort by id and increasing by distance
auto entry_point_comparator = [](const std::pair<NodeID, EdgeWeight> &lhs,
const std::pair<NodeID, EdgeWeight> &rhs)
{
return lhs.first < rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second);
};
std::sort(forward_entry_points.begin(), forward_entry_points.end(), entry_point_comparator);
std::sort(reverse_entry_points.begin(), reverse_entry_points.end(), entry_point_comparator);
NodeID last_id = SPECIAL_NODEID;
for (const auto p : forward_entry_points)
{
if (p.first == last_id)
{
continue;
}
forward_core_heap.Insert(p.first, p.second, p.first);
last_id = p.first;
}
last_id = SPECIAL_NODEID;
for (const auto p : reverse_entry_points)
{
if (p.first == last_id)
{
continue;
}
reverse_core_heap.Insert(p.first, p.second, p.first);
last_id = p.first;
}
// run two-target Dijkstra routing step on core with termination criterion
while (0 < (forward_core_heap.Size() + reverse_core_heap.Size()) &&
distance > (forward_core_heap.MinKey() + reverse_core_heap.MinKey()))
{
if (!forward_core_heap.Empty())
{
RoutingStep(forward_core_heap, reverse_core_heap, &middle, &distance,
min_edge_offset, true, false);
}
if (!reverse_core_heap.Empty())
{
RoutingStep(reverse_core_heap, forward_core_heap, &middle, &distance,
min_edge_offset, false, false);
}
}
// No path found for both target nodes?
if (INVALID_EDGE_WEIGHT == distance)
{
return;
}
// Was a paths over one of the forward/reverse nodes not found?
BOOST_ASSERT_MSG((SPECIAL_NODEID == middle || INVALID_EDGE_WEIGHT != distance),
"no path found");
// we need to unpack sub path from core heaps
if (facade->IsCoreNode(middle))
{
std::vector<NodeID> packed_core_leg;
RetrievePackedPathFromHeap(forward_core_heap, reverse_core_heap, middle,
packed_core_leg);
BOOST_ASSERT(packed_core_leg.size() > 0);
RetrievePackedPathFromSingleHeap(forward_heap, packed_core_leg.front(), packed_leg);
std::reverse(packed_leg.begin(), packed_leg.end());
packed_leg.insert(packed_leg.end(), packed_core_leg.begin(), packed_core_leg.end());
RetrievePackedPathFromSingleHeap(reverse_heap, packed_core_leg.back(), packed_leg);
}
else
{
RetrievePackedPathFromHeap(forward_heap, reverse_heap, middle, packed_leg);
}
}
double get_network_distance(SearchEngineData::QueryHeap &forward_heap, double get_network_distance(SearchEngineData::QueryHeap &forward_heap,
SearchEngineData::QueryHeap &reverse_heap, SearchEngineData::QueryHeap &reverse_heap,
const PhantomNode &source_phantom, const PhantomNode &source_phantom,

View File

@ -118,6 +118,8 @@ template <class EdgeDataT> class BaseDataFacade
virtual std::string get_name_for_id(const unsigned name_id) const = 0; virtual std::string get_name_for_id(const unsigned name_id) const = 0;
virtual std::size_t GetCoreSize() const = 0;
virtual std::string GetTimestamp() const = 0; virtual std::string GetTimestamp() const = 0;
}; };

View File

@ -447,6 +447,11 @@ template <class EdgeDataT> class InternalDataFacade final : public BaseDataFacad
return m_via_node_list.at(id); return m_via_node_list.at(id);
} }
virtual std::size_t GetCoreSize() const override final
{
return m_is_core_node.size();
}
virtual bool IsCoreNode(const NodeID id) const override final virtual bool IsCoreNode(const NodeID id) const override final
{ {
if (m_is_core_node.size() > 0) if (m_is_core_node.size() > 0)

View File

@ -473,6 +473,11 @@ template <class EdgeDataT> class SharedDataFacade final : public BaseDataFacade<
return false; return false;
} }
virtual std::size_t GetCoreSize() const override final
{
return m_is_core_node.size();
}
std::string GetTimestamp() const override final { return m_timestamp; } std::string GetTimestamp() const override final { return m_timestamp; }
}; };