Reduce ramIndex file size
PR #2472: the bottom-most node of the r-tree contains only a single index to a leaf node, so out of 532 bytes only 4 are used.
This commit is contained in:
parent
843f1a6356
commit
3e5c978719
@ -62,12 +62,9 @@ class StaticRTree
|
||||
using EdgeData = EdgeDataT;
|
||||
using CoordinateList = CoordinateListT;
|
||||
|
||||
static_assert(LEAF_PAGE_SIZE >= sizeof(uint32_t) + sizeof(EdgeDataT),
|
||||
"LEAF_PAGE_SIZE is too small");
|
||||
static_assert(((LEAF_PAGE_SIZE - 1) & LEAF_PAGE_SIZE) == 0,
|
||||
"LEAF_PAGE_SIZE is not a power of 2");
|
||||
static constexpr std::uint32_t LEAF_NODE_SIZE =
|
||||
(LEAF_PAGE_SIZE - sizeof(uint32_t)) / sizeof(EdgeDataT);
|
||||
static_assert(LEAF_PAGE_SIZE >= sizeof(uint32_t) + sizeof(EdgeDataT), "LEAF_PAGE_SIZE is too small");
|
||||
static_assert(((LEAF_PAGE_SIZE - 1) & LEAF_PAGE_SIZE) == 0, "LEAF_PAGE_SIZE is not a power of 2");
|
||||
static constexpr std::uint32_t LEAF_NODE_SIZE = (LEAF_PAGE_SIZE - sizeof(uint32_t) - sizeof(Rectangle)) / sizeof(EdgeDataT);
|
||||
|
||||
struct CandidateSegment
|
||||
{
|
||||
@ -75,19 +72,27 @@ class StaticRTree
|
||||
EdgeDataT data;
|
||||
};
|
||||
|
||||
struct TreeNodeIndex
|
||||
{
|
||||
TreeNodeIndex() : index(0), is_leaf(false) {}
|
||||
TreeNodeIndex(std::size_t index, bool is_leaf) : index(index), is_leaf(is_leaf) {}
|
||||
std::uint32_t index : 31;
|
||||
std::uint32_t is_leaf : 1;
|
||||
};
|
||||
|
||||
struct TreeNode
|
||||
{
|
||||
TreeNode() : child_count(0), child_is_on_disk(false) {}
|
||||
TreeNode() : child_count(0) {}
|
||||
std::uint32_t child_count;
|
||||
Rectangle minimum_bounding_rectangle;
|
||||
std::uint32_t child_count : 31;
|
||||
bool child_is_on_disk : 1;
|
||||
std::uint32_t children[BRANCHING_FACTOR];
|
||||
TreeNodeIndex children[BRANCHING_FACTOR];
|
||||
};
|
||||
|
||||
struct ALIGNED(LEAF_PAGE_SIZE) LeafNode
|
||||
{
|
||||
LeafNode() : object_count(0), objects() {}
|
||||
std::uint32_t object_count;
|
||||
Rectangle minimum_bounding_rectangle;
|
||||
std::array<EdgeDataT, LEAF_NODE_SIZE> objects;
|
||||
};
|
||||
static_assert(sizeof(LeafNode) == LEAF_PAGE_SIZE, "LeafNode size does not fit the page size");
|
||||
@ -95,8 +100,7 @@ class StaticRTree
|
||||
private:
|
||||
struct WrappedInputElement
|
||||
{
|
||||
explicit WrappedInputElement(const uint64_t _hilbert_value,
|
||||
const std::uint32_t _array_index)
|
||||
explicit WrappedInputElement(const uint64_t _hilbert_value, const std::uint32_t _array_index)
|
||||
: m_hilbert_value(_hilbert_value), m_array_index(_array_index)
|
||||
{
|
||||
}
|
||||
@ -112,16 +116,8 @@ class StaticRTree
|
||||
}
|
||||
};
|
||||
|
||||
struct TreeIndex
|
||||
{
|
||||
std::uint32_t index;
|
||||
};
|
||||
struct SegmentIndex
|
||||
{
|
||||
std::uint32_t index;
|
||||
std::uint32_t object;
|
||||
Coordinate fixed_projected_coordinate;
|
||||
};
|
||||
struct TreeIndex {};
|
||||
struct SegmentIndex { std::uint32_t object; Coordinate fixed_projected_coordinate; };
|
||||
using QueryNodeType = mapbox::util::variant<TreeIndex, SegmentIndex>;
|
||||
struct QueryCandidate
|
||||
{
|
||||
@ -132,6 +128,7 @@ class StaticRTree
|
||||
}
|
||||
|
||||
std::uint64_t squared_min_dist;
|
||||
TreeNodeIndex index;
|
||||
QueryNodeType node;
|
||||
};
|
||||
|
||||
@ -158,12 +155,10 @@ class StaticRTree
|
||||
std::vector<WrappedInputElement> input_wrapper_vector(element_count);
|
||||
|
||||
// generate auxiliary vector of hilbert-values
|
||||
tbb::parallel_for(
|
||||
tbb::blocked_range<uint64_t>(0, element_count),
|
||||
[&input_data_vector, &input_wrapper_vector, this](
|
||||
const tbb::blocked_range<uint64_t> &range) {
|
||||
for (uint64_t element_counter = range.begin(), end = range.end();
|
||||
element_counter != end;
|
||||
tbb::parallel_for(tbb::blocked_range<uint64_t>(0, element_count),
|
||||
[&input_data_vector, &input_wrapper_vector, this](const tbb::blocked_range<uint64_t> &range)
|
||||
{
|
||||
for (uint64_t element_counter = range.begin(), end = range.end(); element_counter != end;
|
||||
++element_counter)
|
||||
{
|
||||
WrappedInputElement ¤t_wrapper = input_wrapper_vector[element_counter];
|
||||
@ -177,9 +172,7 @@ class StaticRTree
|
||||
|
||||
Coordinate current_centroid = coordinate_calculation::centroid(
|
||||
m_coordinate_list[current_element.u], m_coordinate_list[current_element.v]);
|
||||
current_centroid.lat =
|
||||
FixedLatitude(COORDINATE_PRECISION *
|
||||
web_mercator::latToY(toFloating(current_centroid.lat)));
|
||||
current_centroid.lat = FixedLatitude(COORDINATE_PRECISION * web_mercator::latToY(toFloating(current_centroid.lat)));
|
||||
|
||||
current_wrapper.m_hilbert_value = hilbertCode(current_centroid);
|
||||
}
|
||||
@ -193,38 +186,53 @@ class StaticRTree
|
||||
std::vector<TreeNode> tree_nodes_in_level;
|
||||
|
||||
// pack M elements into leaf node and write to leaf file
|
||||
uint64_t processed_objects_count = 0;
|
||||
while (processed_objects_count < element_count)
|
||||
uint64_t wrapped_element_index = 0;
|
||||
for (std::uint32_t node_index = 0; wrapped_element_index < element_count; ++node_index)
|
||||
{
|
||||
|
||||
LeafNode current_leaf;
|
||||
TreeNode current_node;
|
||||
for (std::uint32_t current_element_index = 0; LEAF_NODE_SIZE > current_element_index;
|
||||
++current_element_index)
|
||||
for (std::uint32_t leaf_index = 0; leaf_index < BRANCHING_FACTOR && wrapped_element_index < element_count; ++leaf_index)
|
||||
{
|
||||
if (element_count > (processed_objects_count + current_element_index))
|
||||
LeafNode current_leaf;
|
||||
Rectangle &rectangle = current_leaf.minimum_bounding_rectangle;
|
||||
for (std::uint32_t object_index = 0; object_index < LEAF_NODE_SIZE && wrapped_element_index < element_count;
|
||||
++object_index, ++wrapped_element_index)
|
||||
{
|
||||
std::uint32_t index_of_next_object =
|
||||
input_wrapper_vector[processed_objects_count + current_element_index]
|
||||
.m_array_index;
|
||||
current_leaf.objects[current_element_index] =
|
||||
input_data_vector[index_of_next_object];
|
||||
++current_leaf.object_count;
|
||||
const std::uint32_t input_object_index = input_wrapper_vector[wrapped_element_index].m_array_index;
|
||||
const EdgeDataT &object = input_data_vector[input_object_index];
|
||||
|
||||
current_leaf.object_count += 1;
|
||||
current_leaf.objects[object_index] = object;
|
||||
|
||||
Coordinate projected_u{web_mercator::fromWGS84(Coordinate{m_coordinate_list[object.u]})};
|
||||
Coordinate projected_v{web_mercator::fromWGS84(Coordinate{m_coordinate_list[object.v]})};
|
||||
|
||||
rectangle.min_lon = std::min(rectangle.min_lon, std::min(projected_u.lon, projected_v.lon));
|
||||
rectangle.max_lon = std::max(rectangle.max_lon, std::max(projected_u.lon, projected_v.lon));
|
||||
|
||||
rectangle.min_lat = std::min(rectangle.min_lat, std::min(projected_u.lat, projected_v.lat));
|
||||
rectangle.max_lat = std::max(rectangle.max_lat, std::max(projected_u.lat, projected_v.lat));
|
||||
|
||||
BOOST_ASSERT(std::abs(static_cast<double>(toFloating(projected_u.lon))) <= 180.);
|
||||
BOOST_ASSERT(std::abs(static_cast<double>(toFloating(projected_u.lat))) <= 180.);
|
||||
BOOST_ASSERT(std::abs(static_cast<double>(toFloating(projected_v.lon))) <= 180.);
|
||||
BOOST_ASSERT(std::abs(static_cast<double>(toFloating(projected_v.lat))) <= 180.);
|
||||
|
||||
BOOST_ASSERT(rectangle.min_lon != FixedLongitude(std::numeric_limits<int>::min()));
|
||||
BOOST_ASSERT(rectangle.min_lat != FixedLatitude(std::numeric_limits<int>::min()));
|
||||
BOOST_ASSERT(rectangle.max_lon != FixedLongitude(std::numeric_limits<int>::min()));
|
||||
BOOST_ASSERT(rectangle.max_lat != FixedLatitude(std::numeric_limits<int>::min()));
|
||||
}
|
||||
|
||||
// append the leaf node to the current tree node
|
||||
current_node.child_count += 1;
|
||||
current_node.children[leaf_index] = TreeNodeIndex{node_index * BRANCHING_FACTOR + leaf_index, true};
|
||||
current_node.minimum_bounding_rectangle.MergeBoundingBoxes(current_leaf.minimum_bounding_rectangle);
|
||||
|
||||
// write leaf_node to leaf node file
|
||||
leaf_node_file.write((char *)¤t_leaf, sizeof(current_leaf));
|
||||
}
|
||||
|
||||
// generate tree node that resemble the objects in leaf and store it for next level
|
||||
InitializeMBRectangle(current_node.minimum_bounding_rectangle,
|
||||
current_leaf.objects,
|
||||
current_leaf.object_count,
|
||||
m_coordinate_list);
|
||||
current_node.child_is_on_disk = true;
|
||||
current_node.children[0] = tree_nodes_in_level.size();
|
||||
tree_nodes_in_level.emplace_back(current_node);
|
||||
|
||||
// write leaf_node to leaf node file
|
||||
leaf_node_file.write((char *)¤t_leaf, sizeof(current_leaf));
|
||||
processed_objects_count += current_leaf.object_count;
|
||||
}
|
||||
leaf_node_file.flush();
|
||||
leaf_node_file.close();
|
||||
@ -238,16 +246,14 @@ class StaticRTree
|
||||
{
|
||||
TreeNode parent_node;
|
||||
// pack BRANCHING_FACTOR elements into tree_nodes each
|
||||
for (std::uint32_t current_child_node_index = 0;
|
||||
BRANCHING_FACTOR > current_child_node_index;
|
||||
for (std::uint32_t current_child_node_index = 0; current_child_node_index < BRANCHING_FACTOR;
|
||||
++current_child_node_index)
|
||||
{
|
||||
if (processed_tree_nodes_in_level < tree_nodes_in_level.size())
|
||||
{
|
||||
TreeNode ¤t_child_node =
|
||||
tree_nodes_in_level[processed_tree_nodes_in_level];
|
||||
TreeNode ¤t_child_node = tree_nodes_in_level[processed_tree_nodes_in_level];
|
||||
// add tree node to parent entry
|
||||
parent_node.children[current_child_node_index] = m_search_tree.size();
|
||||
parent_node.children[current_child_node_index] = TreeNodeIndex{m_search_tree.size(), false};
|
||||
m_search_tree.emplace_back(current_child_node);
|
||||
// merge MBRs
|
||||
parent_node.minimum_bounding_rectangle.MergeBoundingBoxes(
|
||||
@ -262,7 +268,7 @@ class StaticRTree
|
||||
tree_nodes_in_level.swap(tree_nodes_in_next_level);
|
||||
++processing_level;
|
||||
}
|
||||
BOOST_ASSERT_MSG(1 == tree_nodes_in_level.size(), "tree broken, more than one root node");
|
||||
BOOST_ASSERT_MSG(tree_nodes_in_level.size() == 1, "tree broken, more than one root node");
|
||||
// last remaining entry is the root node, store it
|
||||
m_search_tree.emplace_back(tree_nodes_in_level[0]);
|
||||
|
||||
@ -270,17 +276,20 @@ class StaticRTree
|
||||
std::reverse(m_search_tree.begin(), m_search_tree.end());
|
||||
|
||||
std::uint32_t search_tree_size = m_search_tree.size();
|
||||
tbb::parallel_for(
|
||||
tbb::blocked_range<std::uint32_t>(0, search_tree_size),
|
||||
[this, &search_tree_size](const tbb::blocked_range<std::uint32_t> &range) {
|
||||
tbb::parallel_for(tbb::blocked_range<std::uint32_t>(0, search_tree_size),
|
||||
[this, &search_tree_size](const tbb::blocked_range<std::uint32_t> &range)
|
||||
{
|
||||
for (std::uint32_t i = range.begin(), end = range.end(); i != end; ++i)
|
||||
{
|
||||
TreeNode ¤t_tree_node = this->m_search_tree[i];
|
||||
for (std::uint32_t j = 0; j < current_tree_node.child_count; ++j)
|
||||
{
|
||||
const std::uint32_t old_id = current_tree_node.children[j];
|
||||
const std::uint32_t new_id = search_tree_size - old_id - 1;
|
||||
current_tree_node.children[j] = new_id;
|
||||
if (!current_tree_node.children[j].is_leaf)
|
||||
{
|
||||
const std::uint32_t old_id = current_tree_node.children[j].index;
|
||||
const std::uint32_t new_id = search_tree_size - old_id - 1;
|
||||
current_tree_node.children[j].index = new_id;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
@ -306,7 +315,7 @@ class StaticRTree
|
||||
{
|
||||
throw exception("ram index file does not exist");
|
||||
}
|
||||
if (0 == boost::filesystem::file_size(node_file))
|
||||
if (boost::filesystem::file_size(node_file) == 0)
|
||||
{
|
||||
throw exception("ram index file is empty");
|
||||
}
|
||||
@ -344,8 +353,7 @@ class StaticRTree
|
||||
}
|
||||
catch (std::exception &exc)
|
||||
{
|
||||
throw exception(boost::str(boost::format("Leaf file %1% mapping failed: %2%") %
|
||||
leaf_file % exc.what()));
|
||||
throw exception(boost::str(boost::format("Leaf file %1% mapping failed: %2%") % leaf_file % exc.what()));
|
||||
}
|
||||
}
|
||||
|
||||
@ -354,25 +362,22 @@ class StaticRTree
|
||||
std::vector<EdgeDataT> SearchInBox(const Rectangle &search_rectangle) const
|
||||
{
|
||||
const Rectangle projected_rectangle{
|
||||
search_rectangle.min_lon,
|
||||
search_rectangle.max_lon,
|
||||
toFixed(FloatLatitude{
|
||||
web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.min_lat)))}),
|
||||
toFixed(FloatLatitude{
|
||||
web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.max_lat)))})};
|
||||
search_rectangle.min_lon, search_rectangle.max_lon,
|
||||
toFixed(FloatLatitude{web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.min_lat)))}),
|
||||
toFixed(FloatLatitude{web_mercator::latToY(toFloating(FixedLatitude(search_rectangle.max_lat)))})};
|
||||
std::vector<EdgeDataT> results;
|
||||
|
||||
std::queue<std::uint32_t> traversal_queue;
|
||||
traversal_queue.push(0);
|
||||
std::queue<TreeNodeIndex> traversal_queue;
|
||||
traversal_queue.push(TreeNodeIndex{});
|
||||
|
||||
while (!traversal_queue.empty())
|
||||
{
|
||||
auto const ¤t_tree_node = m_search_tree[traversal_queue.front()];
|
||||
auto const current_tree_index = traversal_queue.front();
|
||||
traversal_queue.pop();
|
||||
|
||||
if (current_tree_node.child_is_on_disk)
|
||||
if (current_tree_index.is_leaf)
|
||||
{
|
||||
const LeafNode ¤t_leaf_node = m_leaves[current_tree_node.children[0]];
|
||||
const LeafNode ¤t_leaf_node = m_leaves[current_tree_index.index];
|
||||
|
||||
for (const auto i : irange(0u, current_leaf_node.object_count))
|
||||
{
|
||||
@ -380,14 +385,11 @@ class StaticRTree
|
||||
|
||||
// we don't need to project the coordinates here,
|
||||
// because we use the unprojected rectangle to test against
|
||||
const Rectangle bbox{std::min(m_coordinate_list[current_edge.u].lon,
|
||||
m_coordinate_list[current_edge.v].lon),
|
||||
std::max(m_coordinate_list[current_edge.u].lon,
|
||||
m_coordinate_list[current_edge.v].lon),
|
||||
std::min(m_coordinate_list[current_edge.u].lat,
|
||||
m_coordinate_list[current_edge.v].lat),
|
||||
std::max(m_coordinate_list[current_edge.u].lat,
|
||||
m_coordinate_list[current_edge.v].lat)};
|
||||
const Rectangle bbox{
|
||||
std::min(m_coordinate_list[current_edge.u].lon, m_coordinate_list[current_edge.v].lon),
|
||||
std::max(m_coordinate_list[current_edge.u].lon, m_coordinate_list[current_edge.v].lon),
|
||||
std::min(m_coordinate_list[current_edge.u].lat, m_coordinate_list[current_edge.v].lat),
|
||||
std::max(m_coordinate_list[current_edge.u].lat, m_coordinate_list[current_edge.v].lat)};
|
||||
|
||||
// use the _unprojected_ input rectangle here
|
||||
if (bbox.Intersects(search_rectangle))
|
||||
@ -398,13 +400,16 @@ class StaticRTree
|
||||
}
|
||||
else
|
||||
{
|
||||
const TreeNode ¤t_tree_node = m_search_tree[current_tree_index.index];
|
||||
|
||||
// If it's a tree node, look at all children and add them
|
||||
// to the search queue if their bounding boxes intersect
|
||||
for (std::uint32_t i = 0; i < current_tree_node.child_count; ++i)
|
||||
{
|
||||
const std::int32_t child_id = current_tree_node.children[i];
|
||||
const auto &child_tree_node = m_search_tree[child_id];
|
||||
const auto &child_rectangle = child_tree_node.minimum_bounding_rectangle;
|
||||
const TreeNodeIndex child_id = current_tree_node.children[i];
|
||||
const auto &child_rectangle = child_id.is_leaf
|
||||
? m_leaves[child_id.index].minimum_bounding_rectangle
|
||||
: m_search_tree[child_id.index].minimum_bounding_rectangle;
|
||||
|
||||
if (child_rectangle.Intersects(projected_rectangle))
|
||||
{
|
||||
@ -420,8 +425,7 @@ class StaticRTree
|
||||
std::vector<EdgeDataT> Nearest(const Coordinate input_coordinate,
|
||||
const std::size_t max_results) const
|
||||
{
|
||||
return Nearest(input_coordinate,
|
||||
[](const CandidateSegment &) { return std::make_pair(true, true); },
|
||||
return Nearest(input_coordinate, [](const CandidateSegment &) { return std::make_pair(true, true); },
|
||||
[max_results](const std::size_t num_results, const CandidateSegment &) {
|
||||
return num_results >= max_results;
|
||||
});
|
||||
@ -439,36 +443,30 @@ class StaticRTree
|
||||
|
||||
// initialize queue with root element
|
||||
std::priority_queue<QueryCandidate> traversal_queue;
|
||||
traversal_queue.push(QueryCandidate{0, TreeIndex{0}});
|
||||
traversal_queue.push(QueryCandidate{0, TreeNodeIndex{}, TreeIndex{}});
|
||||
|
||||
while (!traversal_queue.empty())
|
||||
{
|
||||
QueryCandidate current_query_node = traversal_queue.top();
|
||||
traversal_queue.pop();
|
||||
|
||||
const TreeNodeIndex ¤t_tree_index = current_query_node.index;
|
||||
if (current_query_node.node.template is<TreeIndex>())
|
||||
{ // current object is a tree node
|
||||
const TreeNode ¤t_tree_node =
|
||||
m_search_tree[current_query_node.node.template get<TreeIndex>().index];
|
||||
if (current_tree_node.child_is_on_disk)
|
||||
if (current_tree_index.is_leaf)
|
||||
{
|
||||
ExploreLeafNode(current_tree_node.children[0],
|
||||
fixed_projected_coordinate,
|
||||
projected_coordinate,
|
||||
traversal_queue);
|
||||
ExploreLeafNode(current_tree_index, fixed_projected_coordinate, projected_coordinate, traversal_queue);
|
||||
}
|
||||
else
|
||||
{
|
||||
ExploreTreeNode(current_tree_node, fixed_projected_coordinate, traversal_queue);
|
||||
ExploreTreeNode(current_tree_index, fixed_projected_coordinate, traversal_queue);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// inspecting an actual road segment
|
||||
{ // current candidate is an actual road segment
|
||||
const auto &segment_index = current_query_node.node.template get<SegmentIndex>();
|
||||
auto edge_data = m_leaves[segment_index.index].objects[segment_index.object];
|
||||
const auto ¤t_candidate =
|
||||
CandidateSegment{segment_index.fixed_projected_coordinate, edge_data};
|
||||
auto edge_data = m_leaves[current_tree_index.index].objects[segment_index.object];
|
||||
const auto ¤t_candidate = CandidateSegment{segment_index.fixed_projected_coordinate, edge_data};
|
||||
|
||||
// to allow returns of no-results if too restrictive filtering, this needs to be
|
||||
// done here
|
||||
@ -476,7 +474,6 @@ class StaticRTree
|
||||
// first candidate
|
||||
if (terminate(results.size(), current_candidate))
|
||||
{
|
||||
traversal_queue = std::priority_queue<QueryCandidate>{};
|
||||
break;
|
||||
}
|
||||
|
||||
@ -498,12 +495,12 @@ class StaticRTree
|
||||
|
||||
private:
|
||||
template <typename QueueT>
|
||||
void ExploreLeafNode(const std::uint32_t leaf_id,
|
||||
void ExploreLeafNode(const TreeNodeIndex &leaf_id,
|
||||
const Coordinate projected_input_coordinate_fixed,
|
||||
const FloatCoordinate &projected_input_coordinate,
|
||||
QueueT &traversal_queue) const
|
||||
{
|
||||
const LeafNode ¤t_leaf_node = m_leaves[leaf_id];
|
||||
const LeafNode ¤t_leaf_node = m_leaves[leaf_id.index];
|
||||
|
||||
// current object represents a block on disk
|
||||
for (const auto i : irange(0u, current_leaf_node.object_count))
|
||||
@ -514,75 +511,33 @@ class StaticRTree
|
||||
|
||||
FloatCoordinate projected_nearest;
|
||||
std::tie(std::ignore, projected_nearest) =
|
||||
coordinate_calculation::projectPointOnSegment(
|
||||
projected_u, projected_v, projected_input_coordinate);
|
||||
coordinate_calculation::projectPointOnSegment(projected_u, projected_v, projected_input_coordinate);
|
||||
|
||||
const auto squared_distance = coordinate_calculation::squaredEuclideanDistance(
|
||||
projected_input_coordinate_fixed, projected_nearest);
|
||||
const auto squared_distance =
|
||||
coordinate_calculation::squaredEuclideanDistance(projected_input_coordinate_fixed, projected_nearest);
|
||||
// distance must be non-negative
|
||||
BOOST_ASSERT(0. <= squared_distance);
|
||||
traversal_queue.push(QueryCandidate{
|
||||
squared_distance, SegmentIndex{leaf_id, i, Coordinate{projected_nearest}}});
|
||||
traversal_queue.push(QueryCandidate{squared_distance, leaf_id, SegmentIndex{i, Coordinate{projected_nearest}}});
|
||||
}
|
||||
}
|
||||
|
||||
template <class QueueT>
|
||||
void ExploreTreeNode(const TreeNode &parent,
|
||||
void ExploreTreeNode(const TreeNodeIndex &parent_id,
|
||||
const Coordinate fixed_projected_input_coordinate,
|
||||
QueueT &traversal_queue) const
|
||||
{
|
||||
const TreeNode &parent = m_search_tree[parent_id.index];
|
||||
for (std::uint32_t i = 0; i < parent.child_count; ++i)
|
||||
{
|
||||
const std::int32_t child_id = parent.children[i];
|
||||
const auto &child_tree_node = m_search_tree[child_id];
|
||||
const auto &child_rectangle = child_tree_node.minimum_bounding_rectangle;
|
||||
const TreeNodeIndex child_id = parent.children[i];
|
||||
const auto &child_rectangle = child_id.is_leaf
|
||||
? m_leaves[child_id.index].minimum_bounding_rectangle
|
||||
: m_search_tree[child_id.index].minimum_bounding_rectangle;
|
||||
const auto squared_lower_bound_to_element =
|
||||
child_rectangle.GetMinSquaredDist(fixed_projected_input_coordinate);
|
||||
traversal_queue.push(QueryCandidate{squared_lower_bound_to_element,
|
||||
TreeIndex{static_cast<std::uint32_t>(child_id)}});
|
||||
traversal_queue.push(QueryCandidate{squared_lower_bound_to_element, child_id, TreeIndex{}});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename CoordinateT>
|
||||
void InitializeMBRectangle(Rectangle &rectangle,
|
||||
const std::array<EdgeDataT, LEAF_NODE_SIZE> &objects,
|
||||
const std::uint32_t element_count,
|
||||
const std::vector<CoordinateT> &coordinate_list)
|
||||
{
|
||||
for (std::uint32_t i = 0; i < element_count; ++i)
|
||||
{
|
||||
BOOST_ASSERT(objects[i].u < coordinate_list.size());
|
||||
BOOST_ASSERT(objects[i].v < coordinate_list.size());
|
||||
|
||||
Coordinate projected_u{
|
||||
web_mercator::fromWGS84(Coordinate{coordinate_list[objects[i].u]})};
|
||||
Coordinate projected_v{
|
||||
web_mercator::fromWGS84(Coordinate{coordinate_list[objects[i].v]})};
|
||||
|
||||
BOOST_ASSERT(toFloating(projected_u.lon) <= FloatLongitude(180.));
|
||||
BOOST_ASSERT(toFloating(projected_u.lon) >= FloatLongitude(-180.));
|
||||
BOOST_ASSERT(toFloating(projected_u.lat) <= FloatLatitude(180.));
|
||||
BOOST_ASSERT(toFloating(projected_u.lat) >= FloatLatitude(-180.));
|
||||
BOOST_ASSERT(toFloating(projected_v.lon) <= FloatLongitude(180.));
|
||||
BOOST_ASSERT(toFloating(projected_v.lon) >= FloatLongitude(-180.));
|
||||
BOOST_ASSERT(toFloating(projected_v.lat) <= FloatLatitude(180.));
|
||||
BOOST_ASSERT(toFloating(projected_v.lat) >= FloatLatitude(-180.));
|
||||
|
||||
rectangle.min_lon =
|
||||
std::min(rectangle.min_lon, std::min(projected_u.lon, projected_v.lon));
|
||||
rectangle.max_lon =
|
||||
std::max(rectangle.max_lon, std::max(projected_u.lon, projected_v.lon));
|
||||
|
||||
rectangle.min_lat =
|
||||
std::min(rectangle.min_lat, std::min(projected_u.lat, projected_v.lat));
|
||||
rectangle.max_lat =
|
||||
std::max(rectangle.max_lat, std::max(projected_u.lat, projected_v.lat));
|
||||
}
|
||||
BOOST_ASSERT(rectangle.min_lon != FixedLongitude(std::numeric_limits<int>::min()));
|
||||
BOOST_ASSERT(rectangle.min_lat != FixedLatitude(std::numeric_limits<int>::min()));
|
||||
BOOST_ASSERT(rectangle.max_lon != FixedLongitude(std::numeric_limits<int>::min()));
|
||||
BOOST_ASSERT(rectangle.max_lat != FixedLatitude(std::numeric_limits<int>::min()));
|
||||
}
|
||||
};
|
||||
|
||||
//[1] "On Packing R-Trees"; I. Kamel, C. Faloutsos; 1993; DOI: 10.1145/170088.170403
|
||||
|
Loading…
Reference in New Issue
Block a user