several copy edits to brush up the code
- fix copyright header - rename probabilityDensityFunction -> density_function - use double-precision fp literal to indicate intent - remove redundant enum class start value - replace C-style comments with C++ style - make functions const
This commit is contained in:
parent
133e382aae
commit
31cae8f05f
@ -1,6 +1,6 @@
|
||||
/*
|
||||
|
||||
Copyright (c) 2015, Project OSRM, Dennis Luxen, others
|
||||
Copyright (c) 2015, Project OSRM contributors
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
@ -28,72 +28,75 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#ifndef BAYES_CLASSIFIER_HPP
|
||||
#define BAYES_CLASSIFIER_HPP
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct NormalDistribution
|
||||
{
|
||||
NormalDistribution(const double mean, const double standard_deviation)
|
||||
: mean(mean)
|
||||
, standard_deviation(standard_deviation)
|
||||
: mean(mean), standard_deviation(standard_deviation)
|
||||
{
|
||||
}
|
||||
|
||||
// FIXME implement log-probability version since its faster
|
||||
double probabilityDensityFunction(const double val)
|
||||
double density_function(const double val) const
|
||||
{
|
||||
const double x = val - mean;
|
||||
return 1.0 / (std::sqrt(2*M_PI) * standard_deviation) * std::exp(-x*x / (standard_deviation * standard_deviation));
|
||||
return 1.0 / (std::sqrt(2. * M_PI) * standard_deviation) *
|
||||
std::exp(-x * x / (standard_deviation * standard_deviation));
|
||||
}
|
||||
|
||||
double mean;
|
||||
double standard_deviation;
|
||||
};
|
||||
|
||||
|
||||
struct LaplaceDistribution
|
||||
{
|
||||
LaplaceDistribution(const double location, const double scale)
|
||||
: location(location)
|
||||
, scale(scale)
|
||||
: location(location), scale(scale)
|
||||
{
|
||||
}
|
||||
|
||||
// FIXME implement log-probability version since its faster
|
||||
double probabilityDensityFunction(const double val) const
|
||||
double density_function(const double val) const
|
||||
{
|
||||
const double x = std::abs(val - location);
|
||||
return 1.0 / (2*scale) * std::exp(-x / scale);
|
||||
return 1.0 / (2. * scale) * std::exp(-x / scale);
|
||||
}
|
||||
|
||||
double location;
|
||||
double scale;
|
||||
};
|
||||
|
||||
template<typename PositiveDistributionT, typename NegativeDistributionT, typename ValueT>
|
||||
template <typename PositiveDistributionT, typename NegativeDistributionT, typename ValueT>
|
||||
class BayesClassifier
|
||||
{
|
||||
public:
|
||||
enum class ClassLabel : unsigned {NEGATIVE = 0, POSITIVE};
|
||||
public:
|
||||
enum class ClassLabel : unsigned
|
||||
{
|
||||
NEGATIVE,
|
||||
POSITIVE
|
||||
};
|
||||
using ClassificationT = std::pair<ClassLabel, double>;
|
||||
|
||||
BayesClassifier(const PositiveDistributionT& positive_distribution,
|
||||
const NegativeDistributionT& negative_distribution,
|
||||
BayesClassifier(const PositiveDistributionT &positive_distribution,
|
||||
const NegativeDistributionT &negative_distribution,
|
||||
const double positive_apriori_probability)
|
||||
: positive_distribution(positive_distribution)
|
||||
, negative_distribution(negative_distribution)
|
||||
, positive_apriori_probability(positive_apriori_probability)
|
||||
, negative_apriori_probability(1 - positive_apriori_probability)
|
||||
: positive_distribution(positive_distribution),
|
||||
negative_distribution(negative_distribution),
|
||||
positive_apriori_probability(positive_apriori_probability),
|
||||
negative_apriori_probability(1. - positive_apriori_probability)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns label and the probability of the label.
|
||||
*/
|
||||
ClassificationT classify(const ValueT& v) const
|
||||
// Returns label and the probability of the label.
|
||||
ClassificationT classify(const ValueT &v) const
|
||||
{
|
||||
const double positive_postpriori = positive_apriori_probability * positive_distribution.probabilityDensityFunction(v);
|
||||
const double negative_postpriori = negative_apriori_probability * negative_distribution.probabilityDensityFunction(v);
|
||||
const double positive_postpriori =
|
||||
positive_apriori_probability * positive_distribution.density_function(v);
|
||||
const double negative_postpriori =
|
||||
negative_apriori_probability * negative_distribution.density_function(v);
|
||||
const double norm = positive_postpriori + negative_postpriori;
|
||||
|
||||
if (positive_postpriori > negative_postpriori)
|
||||
@ -104,11 +107,11 @@ public:
|
||||
return std::make_pair(ClassLabel::NEGATIVE, negative_postpriori / norm);
|
||||
}
|
||||
|
||||
private:
|
||||
private:
|
||||
PositiveDistributionT positive_distribution;
|
||||
NegativeDistributionT negative_distribution;
|
||||
double positive_apriori_probability;
|
||||
double negative_apriori_probability;
|
||||
};
|
||||
|
||||
#endif /* BAYES_CLASSIFIER_HPP */
|
||||
#endif // BAYES_CLASSIFIER_HPP
|
||||
|
Loading…
Reference in New Issue
Block a user