added list of intersections to the step-maneuver, not in api so far

This commit is contained in:
Moritz Kobitzsch 2016-03-22 14:17:17 +01:00 committed by Patrick Niklaus
parent 59fbb289b9
commit 2472c5d6a1
5 changed files with 200 additions and 142 deletions

View File

@ -43,7 +43,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
const bool source_traversed_in_reverse,
const bool target_traversed_in_reverse)
{
const double constexpr ZERO_DURACTION = 0., ZERO_DISTANCE = 0.;
const double constexpr ZERO_DURATION = 0., ZERO_DISTANCE = 0.;
const EdgeWeight source_duration =
source_traversed_in_reverse ? source_node.reverse_weight : source_node.forward_weight;
const auto source_mode = source_traversed_in_reverse ? source_node.backward_travel_mode
@ -167,7 +167,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
WaypointType::Arrive, leg_geometry);
steps.push_back(RouteStep{target_node.name_id,
facade.GetNameForID(target_node.name_id),
ZERO_DURACTION,
ZERO_DURATION,
ZERO_DISTANCE,
target_mode,
final_maneuver,

View File

@ -5,6 +5,7 @@
#include "extractor/guidance/turn_instruction.hpp"
#include <cstdint>
#include <vector>
namespace osrm
{
@ -20,6 +21,14 @@ enum class WaypointType : std::uint8_t
Depart,
};
//A represenetation of intermediate intersections
struct IntermediateIntersection
{
double duration;
double distance;
util::Coordinate location;
};
struct StepManeuver
{
util::Coordinate location;
@ -28,7 +37,7 @@ struct StepManeuver
extractor::guidance::TurnInstruction instruction;
WaypointType waypoint_type;
unsigned exit;
unsigned intersection;
std::vector<IntermediateIntersection> intersections;
};
} // namespace guidance
} // namespace engine

View File

@ -153,8 +153,8 @@ util::json::Object makeStepManeuver(const guidance::StepManeuver &maneuver)
//TODO currently we need this to comply with the api.
//We should move this to an additional entry, the moment we
//actually compute the correct locations of the intersections
if (maneuver.intersection != 0 && maneuver.exit == 0 )
step_maneuver.values["exit"] = maneuver.intersection;
if (!maneuver.intersections.empty() && maneuver.exit == 0 )
step_maneuver.values["exit"] = maneuver.intersections.size();
return step_maneuver;
}

View File

@ -37,13 +37,15 @@ StepManeuver stepManeuverFromGeometry(extractor::guidance::TurnInstruction instr
pre_turn_bearing =
util::coordinate_calculation::bearing(pre_turn_coordinate, turn_coordinate);
}
return StepManeuver{turn_coordinate,
pre_turn_bearing,
post_turn_bearing,
instruction,
waypoint_type,
INVALID_EXIT_NR,
INVALID_EXIT_NR};
return StepManeuver{
std::move(turn_coordinate),
pre_turn_bearing,
post_turn_bearing,
std::move(instruction),
waypoint_type,
INVALID_EXIT_NR,
{} // no intermediate intersections
};
}
StepManeuver stepManeuverFromGeometry(extractor::guidance::TurnInstruction instruction,
@ -64,13 +66,15 @@ StepManeuver stepManeuverFromGeometry(extractor::guidance::TurnInstruction instr
const double post_turn_bearing =
util::coordinate_calculation::bearing(turn_coordinate, post_turn_coordinate);
return StepManeuver{turn_coordinate,
pre_turn_bearing,
post_turn_bearing,
instruction,
WaypointType::None,
INVALID_EXIT_NR,
INVALID_EXIT_NR};
return StepManeuver{
std::move(turn_coordinate),
pre_turn_bearing,
post_turn_bearing,
std::move(instruction),
WaypointType::None,
INVALID_EXIT_NR,
{} // no intermediate intersections
};
}
} // ns detail
} // ns engine

View File

@ -4,8 +4,11 @@
#include "engine/guidance/toolkit.hpp"
#include <boost/assert.hpp>
#include <boost/range/algorithm_ext/erase.hpp>
#include <iostream>
#include <vector>
#include <cstddef>
#include <utility>
using TurnInstruction = osrm::extractor::guidance::TurnInstruction;
using TurnType = osrm::extractor::guidance::TurnType;
@ -32,11 +35,126 @@ RouteStep forwardInto(RouteStep destination, const RouteStep &source)
// Overwrites turn instruction and increases exit NR
destination.duration += source.duration;
destination.distance += source.distance;
destination.geometry_begin = std::min( destination.geometry_begin, source.geometry_begin );
destination.geometry_end = std::max( destination.geometry_end, source.geometry_end );
destination.geometry_begin = std::min(destination.geometry_begin, source.geometry_begin);
destination.geometry_end = std::max(destination.geometry_end, source.geometry_end);
return destination;
}
void fixFinalRoundabout(std::vector<RouteStep> &steps)
{
for (std::size_t propagation_index = steps.size() - 1; propagation_index > 0;
--propagation_index)
{
auto &propagation_step = steps[propagation_index];
if (entersRoundabout(propagation_step.maneuver.instruction))
{
propagation_step.maneuver.exit = 0;
propagation_step.geometry_end = steps.back().geometry_begin;
break;
}
else if (propagation_step.maneuver.instruction.type == TurnType::StayOnRoundabout)
{
//TODO this operates on the data that is in the instructions.
//We are missing out on the final segment after the last stay-on-roundabout
//instruction though. it is not contained somewhere until now
steps[propagation_index - 1] =
forwardInto(std::move(steps[propagation_index - 1]), propagation_step);
propagation_step.maneuver.instruction =
TurnInstruction::NO_TURN(); // mark intermediate instructions invalid
}
}
}
bool setUpRoundabout(RouteStep &step)
{
// basic entry into a roundabout
// Special case handling, if an entry is directly tied to an exit
const auto instruction = step.maneuver.instruction;
if (instruction.type == TurnType::EnterRotaryAtExit ||
instruction.type == TurnType::EnterRoundaboutAtExit)
{
step.maneuver.exit = 1;
// prevent futher special case handling of these two.
if (instruction.type == TurnType::EnterRotaryAtExit)
step.maneuver.instruction = TurnType::EnterRotary;
else
step.maneuver.instruction = TurnType::EnterRoundabout;
}
if (leavesRoundabout(instruction))
{
step.maneuver.exit = 1; // count the otherwise missing exit
if (instruction.type == TurnType::EnterRotaryAtExit)
step.maneuver.instruction = TurnType::EnterRotary;
else
step.maneuver.instruction = TurnType::EnterRoundabout;
return false;
}
else
{
return true;
}
}
void closeOffRoundabout(const bool on_roundabout,
std::vector<RouteStep> &steps,
const std::size_t step_index)
{
auto &step = steps[step_index];
step.maneuver.exit += 1;
if (!on_roundabout)
{
// We reached a special case that requires the addition of a special route step in
// the beginning.
// We started in a roundabout, so to announce the exit, we move use the exit
// instruction and
// move it right to the beginning to make sure to immediately announce the exit.
BOOST_ASSERT(leavesRoundabout(steps[1].maneuver.instruction) ||
steps[1].maneuver.instruction.type == TurnType::StayOnRoundabout);
steps[0].geometry_end = 1;
steps[1] = detail::forwardInto(steps[1], steps[0]);
steps[0].duration = 0;
steps[0].distance = 0;
steps[1].maneuver.instruction.type = step.maneuver.instruction.type == TurnType::ExitRotary
? TurnType::EnterRotary
: TurnType::EnterRoundabout;
}
// Normal exit from the roundabout, or exit from a previously fixed roundabout.
// Propagate the index back to the entering
// location and
// prepare the current silent set of instructions for removal.
if (step_index > 1)
{
// The very first route-step is head, so we cannot iterate past that one
for (std::size_t propagation_index = step_index - 1; propagation_index > 0;
--propagation_index)
{
auto &propagation_step = steps[propagation_index];
propagation_step = detail::forwardInto(propagation_step, steps[propagation_index + 1]);
if (entersRoundabout(propagation_step.maneuver.instruction))
{
// TODO at this point, we can remember the additional name for a rotary
// This requires some initial thought on the data format, though
propagation_step.maneuver.exit = step.maneuver.exit;
propagation_step.geometry_end = step.geometry_end;
propagation_step.name = step.name;
propagation_step.name_id = step.name_id;
break;
}
else
{
BOOST_ASSERT(propagation_step.maneuver.instruction.type =
TurnType::StayOnRoundabout);
propagation_step.maneuver.instruction =
TurnInstruction::NO_TURN(); // mark intermediate instructions invalid
}
}
// remove exit
step.maneuver.instruction = TurnInstruction::NO_TURN();
}
}
} // namespace detail
void print(const std::vector<RouteStep> &steps)
@ -51,8 +169,13 @@ void print(const std::vector<RouteStep> &steps)
std::cout << "\t[" << ++segment << "]: " << type << " " << modifier
<< " Duration: " << step.duration << " Distance: " << step.distance
<< " Geometry: " << step.geometry_begin << " " << step.geometry_end
<< " exit: " << step.maneuver.exit << " Intersection: " << step.maneuver.intersection << " name[" << step.name_id
<< "]: " << step.name << std::endl;
<< " exit: " << step.maneuver.exit
<< " Intersections: " << step.maneuver.intersections.size() << " [";
for (auto intersection : step.maneuver.intersections)
std::cout << "(" << intersection.duration << " " << intersection.distance << ")";
std::cout << "] name[" << step.name_id << "]: " << step.name << std::endl;
}
}
@ -70,8 +193,8 @@ std::vector<RouteStep> postProcess(std::vector<RouteStep> steps)
if (steps.size() == 2)
return steps;
#define PRINT_DEBUG 0
#if PRINT_DEBUG
#define OSRM_POST_PROCESSING_PRINT_DEBUG 0
#if OSRM_POST_PROCESSING_PRINT_DEBUG
std::cout << "[POSTPROCESSING ITERATION]" << std::endl;
std::cout << "Input\n";
print(steps);
@ -79,6 +202,18 @@ std::vector<RouteStep> postProcess(std::vector<RouteStep> steps)
// Count Street Exits forward
bool on_roundabout = false;
// adds an intersection to the initial route step
// It includes the length of the last step, until the intersection
// Also updates the length of the respective segment
auto addIntersection =
[](RouteStep into, const RouteStep &last_step, const RouteStep &intersection)
{
into.maneuver.intersections.push_back(
{last_step.duration, last_step.distance, intersection.maneuver.location});
return detail::forwardInto(std::move(into), intersection);
};
// count the exits forward. if enter/exit roundabout happen both, no further treatment is
// required. We might end up with only one of them (e.g. starting within a roundabout)
// or having a via-point in the roundabout.
@ -91,33 +226,9 @@ std::vector<RouteStep> postProcess(std::vector<RouteStep> steps)
if (entersRoundabout(instruction))
{
last_valid_instruction = step_index;
// basic entry into a roundabout
// Special case handling, if an entry is directly tied to an exit
if (instruction.type == TurnType::EnterRotaryAtExit ||
instruction.type == TurnType::EnterRoundaboutAtExit)
{
step.maneuver.exit = 1;
// prevent futher special case handling of these two.
if (instruction.type == TurnType::EnterRotaryAtExit)
step.maneuver.instruction = TurnType::EnterRotary;
else
step.maneuver.instruction = TurnType::EnterRoundabout;
}
if (leavesRoundabout(instruction))
{
step.maneuver.exit = 1; // count the otherwise missing exit
if (instruction.type == TurnType::EnterRotaryAtExit)
step.maneuver.instruction = TurnType::EnterRotary;
else
step.maneuver.instruction = TurnType::EnterRoundabout;
}
else
{
on_roundabout = true;
if (step_index + 1 < steps.size())
steps[step_index + 1].maneuver.exit = step.maneuver.exit;
}
on_roundabout = detail::setUpRoundabout(step);
if (on_roundabout && step_index + 1 < steps.size())
steps[step_index + 1].maneuver.exit = step.maneuver.exit;
}
else if (instruction.type == TurnType::StayOnRoundabout)
{
@ -128,77 +239,25 @@ std::vector<RouteStep> postProcess(std::vector<RouteStep> steps)
}
else if (leavesRoundabout(instruction))
{
// count the exit (0 based vs 1 based counting)
step.maneuver.exit += 1;
if (!on_roundabout)
{
// We reached a special case that requires the addition of a special route step in
// the beginning.
// We started in a roundabout, so to announce the exit, we move use the exit
// instruction and
// move it right to the beginning to make sure to immediately announce the exit.
BOOST_ASSERT(leavesRoundabout(steps[1].maneuver.instruction) ||
steps[1].maneuver.instruction.type == TurnType::StayOnRoundabout);
steps[0].geometry_end = 1;
steps[1] = detail::forwardInto(steps[1], steps[0]);
steps[0].duration = 0;
steps[0].distance = 0;
steps[1].maneuver.instruction.type =
step.maneuver.instruction.type == TurnType::ExitRotary
? TurnType::EnterRotary
: TurnType::EnterRoundabout;
//remember the now enter-instruction as valid
// in case the we are not on a roundabout, the very first instruction
// after the depart will be transformed into a roundabout and become
// the first valid instruction
last_valid_instruction = 1;
}
// Normal exit from the roundabout, or exit from a previously fixed roundabout.
// Propagate the index back to the entering
// location and
// prepare the current silent set of instructions for removal.
if (step_index > 1)
{
// The very first route-step is head, so we cannot iterate past that one
for (std::size_t propagation_index = step_index - 1; propagation_index > 0;
--propagation_index)
{
auto &propagation_step = steps[propagation_index];
propagation_step =
detail::forwardInto(propagation_step, steps[propagation_index + 1]);
if (entersRoundabout(propagation_step.maneuver.instruction))
{
// TODO at this point, we can remember the additional name for a rotary
// This requires some initial thought on the data format, though
propagation_step.maneuver.exit = step.maneuver.exit;
propagation_step.geometry_end = step.geometry_end;
propagation_step.name = step.name;
propagation_step.name_id = step.name_id;
break;
}
else
{
BOOST_ASSERT(propagation_step.maneuver.instruction.type =
TurnType::StayOnRoundabout);
propagation_step.maneuver.instruction =
TurnInstruction::NO_TURN(); // mark intermediate instructions invalid
}
}
// remove exit
step.maneuver.instruction = TurnInstruction::NO_TURN();
}
detail::closeOffRoundabout(on_roundabout, steps, step_index);
on_roundabout = false;
}
else if (instruction.type == TurnType::Suppressed)
{
// count intersections. We cannot use exit, since intersections can follow directly after a roundabout
steps[last_valid_instruction].maneuver.intersection += 1;
steps[last_valid_instruction] =
detail::forwardInto(steps[last_valid_instruction], step);
// count intersections. We cannot use exit, since intersections can follow directly
// after a roundabout
steps[last_valid_instruction] = addIntersection(
std::move(steps[last_valid_instruction]), steps[step_index - 1], step);
step.maneuver.instruction = TurnInstruction::NO_TURN();
}
else if( !isSilent(instruction) )
else if (!isSilent(instruction))
{
// Remember the last non silent instruction
last_valid_instruction = step_index;
@ -209,38 +268,24 @@ std::vector<RouteStep> postProcess(std::vector<RouteStep> steps)
// A roundabout without exit translates to enter-roundabout.
if (on_roundabout)
{
for (std::size_t propagation_index = steps.size() - 1; propagation_index > 0;
--propagation_index)
{
auto &propagation_step = steps[propagation_index];
if (entersRoundabout(propagation_step.maneuver.instruction))
{
propagation_step.maneuver.exit = 0;
break;
}
else if (propagation_step.maneuver.instruction == TurnType::StayOnRoundabout)
{
propagation_step.maneuver.instruction =
TurnInstruction::NO_TURN(); // mark intermediate instructions invalid
}
}
detail::fixFinalRoundabout(steps);
}
// finally clean up the post-processed instructions.
// Remove all, now NO_TURN instructions for the set of steps
auto pos = steps.begin();
for (auto check = steps.begin(); check != steps.end(); ++check)
// Remove all invalid instructions from the set of instructions.
// An instruction is invalid, if its NO_TURN and has WaypointType::None.
// Two valid NO_TURNs exist in each leg in the form of Depart/Arrive
// keep valid instructions
const auto not_is_valid = [](const RouteStep &step)
{
// keep valid instrucstions
if (check->maneuver.instruction != TurnInstruction::NO_TURN() ||
check->maneuver.waypoint_type != WaypointType::None)
{
*pos = *check;
++pos;
}
}
steps.erase(pos, steps.end());
#if PRINT_DEBUG
return step.maneuver.instruction == TurnInstruction::NO_TURN() &&
step.maneuver.waypoint_type == WaypointType::None;
};
boost::remove_erase_if(steps, not_is_valid);
#if OSRM_POST_PROCESSING_PRINT_DEBUG
std::cout << "Merged\n";
print(steps);
#endif