Preliminary integration of the tile plugin

This commit is contained in:
Patrick Niklaus 2016-03-02 18:26:44 +01:00
parent 399a2233f3
commit 209d1ada6a
5 changed files with 440 additions and 410 deletions

View File

@ -0,0 +1,28 @@
#ifndef ENGINE_API_TILE_PARAMETERS_HPP
#define ENGINE_API_TILE_PARAMETERS_HPP
namespace osrm
{
namespace engine
{
namespace api
{
struct TileParameters final
{
unsigned x;
unsigned y;
unsigned z;
// FIXME check if x and y work with z
bool IsValid()
{
return z < 20;
};
};
}
}
}
#endif

View File

@ -31,6 +31,7 @@ struct TableParameters;
struct NearestParameters;
struct TripParameters;
struct MatchParameters;
struct TileParameters;
}
namespace plugins
{
@ -39,6 +40,7 @@ class TablePlugin;
class NearestPlugin;
class TripPlugin;
class MatchPlugin;
class TilePlugin;
}
// End fwd decls
@ -66,6 +68,7 @@ class Engine final
Status Nearest(const api::NearestParameters &parameters, util::json::Object &result);
Status Trip(const api::TripParameters &parameters, util::json::Object &result);
Status Match(const api::MatchParameters &parameters, util::json::Object &result);
Status Tile(const api::TileParameters &parameters, std::string &result);
private:
std::unique_ptr<EngineLock> lock;
@ -75,6 +78,7 @@ class Engine final
std::unique_ptr<plugins::NearestPlugin> nearest_plugin;
std::unique_ptr<plugins::TripPlugin> trip_plugin;
std::unique_ptr<plugins::MatchPlugin> match_plugin;
std::unique_ptr<plugins::TilePlugin> tile_plugin;
std::unique_ptr<datafacade::BaseDataFacade> query_data_facade;
};

View File

@ -2,17 +2,9 @@
#define TILEPLUGIN_HPP
#include "engine/plugins/plugin_base.hpp"
#include "osrm/json_container.hpp"
#include <protozero/varint.hpp>
#include <protozero/pbf_writer.hpp>
#include "engine/api/tile_parameters.hpp"
#include <string>
#include <vector>
#include <utility>
#include <cmath>
#include <cstdint>
/*
* This plugin generates Mapbox Vector tiles that show the internal
@ -29,405 +21,12 @@ namespace engine
namespace plugins
{
// from mapnik/well_known_srs.hpp
const constexpr double EARTH_RADIUS = 6378137.0;
const constexpr double EARTH_DIAMETER = EARTH_RADIUS * 2.0;
const constexpr double EARTH_CIRCUMFERENCE = EARTH_DIAMETER * M_PI;
const constexpr double MAXEXTENT = EARTH_CIRCUMFERENCE / 2.0;
const constexpr double M_PI_by2 = M_PI / 2.0;
const constexpr double D2R = M_PI / 180.0;
const constexpr double R2D = 180.0 / M_PI;
const constexpr double M_PIby360 = M_PI / 360.0;
const constexpr double MAXEXTENTby180 = MAXEXTENT / 180.0;
const double MAX_LATITUDE = R2D * (2.0 * std::atan(std::exp(180.0 * D2R)) - M_PI_by2);
// ^ math functions are not constexpr since they have side-effects (setting errno) :(
// from mapnik-vector-tile
namespace detail_pbf
{
inline unsigned encode_length(const unsigned len) { return (len << 3u) | 2u; }
}
// Converts a regular WSG84 lon/lat pair into
// a mercator coordinate
inline void lonlat2merc(double &x, double &y)
{
if (x > 180)
x = 180;
else if (x < -180)
x = -180;
if (y > MAX_LATITUDE)
y = MAX_LATITUDE;
else if (y < -MAX_LATITUDE)
y = -MAX_LATITUDE;
x = x * MAXEXTENTby180;
y = std::log(std::tan((90 + y) * M_PIby360)) * R2D;
y = y * MAXEXTENTby180;
}
// This is the global default tile size for all Mapbox Vector Tiles
const constexpr double tile_size_ = 256.0;
//
inline void from_pixels(const double shift, double &x, double &y)
{
const double b = shift / 2.0;
x = (x - b) / (shift / 360.0);
const double g = (y - b) / -(shift / (2 * M_PI));
y = R2D * (2.0 * std::atan(std::exp(g)) - M_PI_by2);
}
// Converts a WMS tile coordinate (z,x,y) into a mercator bounding box
inline void xyz2mercator(
const int x, const int y, const int z, double &minx, double &miny, double &maxx, double &maxy)
{
minx = x * tile_size_;
miny = (y + 1.0) * tile_size_;
maxx = (x + 1.0) * tile_size_;
maxy = y * tile_size_;
const double shift = std::pow(2.0, z) * tile_size_;
from_pixels(shift, minx, miny);
from_pixels(shift, maxx, maxy);
lonlat2merc(minx, miny);
lonlat2merc(maxx, maxy);
}
// Converts a WMS tile coordinate (z,x,y) into a wsg84 bounding box
inline void xyz2wsg84(
const int x, const int y, const int z, double &minx, double &miny, double &maxx, double &maxy)
{
minx = x * tile_size_;
miny = (y + 1.0) * tile_size_;
maxx = (x + 1.0) * tile_size_;
maxy = y * tile_size_;
const double shift = std::pow(2.0, z) * tile_size_;
from_pixels(shift, minx, miny);
from_pixels(shift, maxx, maxy);
}
// emulates mapbox::box2d, just a simple container for
// a box
struct bbox final
{
bbox(const double _minx, const double _miny, const double _maxx, const double _maxy)
: minx(_minx), miny(_miny), maxx(_maxx), maxy(_maxy)
{
}
double width() const { return maxx - minx; }
double height() const { return maxy - miny; }
const double minx;
const double miny;
const double maxx;
const double maxy;
};
// Simple container class for WSG84 coordinates
struct point_type_d final
{
point_type_d(double _x, double _y) : x(_x), y(_y) {}
const double x;
const double y;
};
// Simple container for integer coordinates (i.e. pixel coords)
struct point_type_i final
{
point_type_i(std::int64_t _x, std::int64_t _y) : x(_x), y(_y) {}
const std::int64_t x;
const std::int64_t y;
};
using line_type = std::vector<point_type_i>;
using line_typed = std::vector<point_type_d>;
// from mapnik-vector-tile
// Encodes a linestring using protobuf zigzag encoding
inline bool encode_linestring(line_type line,
protozero::packed_field_uint32 &geometry,
std::int32_t &start_x,
std::int32_t &start_y)
{
const std::size_t line_size = line.size();
// line_size -= detail_pbf::repeated_point_count(line);
if (line_size < 2)
{
return false;
}
const unsigned line_to_length = static_cast<const unsigned>(line_size) - 1;
auto pt = line.begin();
geometry.add_element(9); // move_to | (1 << 3)
geometry.add_element(protozero::encode_zigzag32(pt->x - start_x));
geometry.add_element(protozero::encode_zigzag32(pt->y - start_y));
start_x = pt->x;
start_y = pt->y;
geometry.add_element(detail_pbf::encode_length(line_to_length));
for (++pt; pt != line.end(); ++pt)
{
const std::int32_t dx = pt->x - start_x;
const std::int32_t dy = pt->y - start_y;
/*if (dx == 0 && dy == 0)
{
continue;
}*/
geometry.add_element(protozero::encode_zigzag32(dx));
geometry.add_element(protozero::encode_zigzag32(dy));
start_x = pt->x;
start_y = pt->y;
}
return true;
}
template <class DataFacadeT> class TilePlugin final : public BasePlugin
class TilePlugin final : public BasePlugin
{
public:
explicit TilePlugin(DataFacadeT *facade) : facade(facade), descriptor_string("tile") {}
TilePlugin(datafacade::BaseDataFacade &facade) : BasePlugin(facade) {}
const std::string GetDescriptor() const override final { return descriptor_string; }
Status HandleRequest(const RouteParameters &route_parameters,
util::json::Object &json_result) override final
{
// Vector tiles are 4096 virtual pixels on each side
const double tile_extent = 4096.0;
double min_lon, min_lat, max_lon, max_lat;
// Convert the z,x,y mercator tile coordinates into WSG84 lon/lat values
xyz2wsg84(route_parameters.x, route_parameters.y, route_parameters.z, min_lon, min_lat,
max_lon, max_lat);
FixedPointCoordinate southwest{static_cast<std::int32_t>(min_lat * COORDINATE_PRECISION),
static_cast<std::int32_t>(min_lon * COORDINATE_PRECISION)};
FixedPointCoordinate northeast{static_cast<std::int32_t>(max_lat * COORDINATE_PRECISION),
static_cast<std::int32_t>(max_lon * COORDINATE_PRECISION)};
// Fetch all the segments that are in our bounding box.
// This hits the OSRM StaticRTree
const auto edges = facade->GetEdgesInBox(southwest, northeast);
// TODO: extract speed values for compressed and uncompressed geometries
// Convert tile coordinates into mercator coordinates
xyz2mercator(route_parameters.x, route_parameters.y, route_parameters.z, min_lon, min_lat,
max_lon, max_lat);
const bbox tile_bbox{min_lon, min_lat, max_lon, max_lat};
// Protobuf serialized blocks when objects go out of scope, hence
// the extra scoping below.
std::string buffer;
protozero::pbf_writer tile_writer(buffer);
{
// Add a layer object to the PBF stream. 3=='layer' from the vector tile spec (2.1)
protozero::pbf_writer layer_writer(tile_writer, 3);
// TODO: don't write a layer if there are no features
// Field 15 is the "version field, and it's a uint32
layer_writer.add_uint32(15, 2); // version
// Field 1 is the "layer name" field, it's a string
layer_writer.add_string(1, "speeds"); // name
// Field 5 is the tile extent. It's a uint32 and should be set to 4096
// for normal vector tiles.
layer_writer.add_uint32(5, 4096); // extent
// Begin the layer features block
{
// Each feature gets a unique id, starting at 1
unsigned id = 1;
for (const auto &edge : edges)
{
// Get coordinates for start/end nodes of segmet (NodeIDs u and v)
const auto a = facade->GetCoordinateOfNode(edge.u);
const auto b = facade->GetCoordinateOfNode(edge.v);
// Calculate the length in meters, using the same calculation used to set the
// weight, so we can back-calculate the speed value that was set.
const double length = osrm::util::coordinate_calculation::greatCircleDistance(
a.lat, a.lon, b.lat, b.lon);
int forward_weight = 0;
int reverse_weight = 0;
if (edge.forward_packed_geometry_id != SPECIAL_EDGEID) {
std::vector<EdgeWeight> forward_weight_vector;
facade->GetUncompressedWeights(edge.forward_packed_geometry_id,
forward_weight_vector);
forward_weight = forward_weight_vector[edge.fwd_segment_position];
}
if (edge.reverse_packed_geometry_id != SPECIAL_EDGEID) {
std::vector<EdgeWeight> reverse_weight_vector;
facade->GetUncompressedWeights(edge.reverse_packed_geometry_id,
reverse_weight_vector);
BOOST_ASSERT(edge.fwd_segment_position < reverse_weight_vector.size());
reverse_weight = reverse_weight_vector[reverse_weight_vector.size() -
edge.fwd_segment_position - 1];
}
// If this is a valid forward edge, go ahead and add it to the tile
if (forward_weight != 0 &&
edge.forward_edge_based_node_id != SPECIAL_NODEID)
{
std::int32_t start_x = 0;
std::int32_t start_y = 0;
line_typed geo_line;
geo_line.emplace_back(a.lon / COORDINATE_PRECISION,
a.lat / COORDINATE_PRECISION);
geo_line.emplace_back(b.lon / COORDINATE_PRECISION,
b.lat / COORDINATE_PRECISION);
// Calculate the speed for this line
std::uint32_t speed = static_cast<std::uint32_t>(
round(length / forward_weight * 10 * 3.6));
line_type tile_line;
for (auto const &pt : geo_line)
{
double px_merc = pt.x;
double py_merc = pt.y;
lonlat2merc(px_merc, py_merc);
// convert lon/lat to tile coordinates
const auto px = std::round(((px_merc - tile_bbox.minx) * tile_extent /
16.0 / tile_bbox.width()) *
tile_extent / 256.0);
const auto py = std::round(((tile_bbox.maxy - py_merc) * tile_extent /
16.0 / tile_bbox.height()) *
tile_extent / 256.0);
tile_line.emplace_back(px, py);
}
// Here, we save the two attributes for our feature: the speed and the
// is_small
// boolean. We onl serve up speeds from 0-139, so all we do is save the
// first
protozero::pbf_writer feature_writer(layer_writer, 2);
// Field 3 is the "geometry type" field. Value 2 is "line"
feature_writer.add_enum(3, 2); // geometry type
// Field 1 for the feature is the "id" field.
feature_writer.add_uint64(1, id++); // id
{
// When adding attributes to a feature, we have to write
// pairs of numbers. The first value is the index in the
// keys array (written later), and the second value is the
// index into the "values" array (also written later). We're
// not writing the actual speed or bool value here, we're saving
// an index into the "values" array. This means many features
// can share the same value data, leading to smaller tiles.
protozero::packed_field_uint32 field(feature_writer, 2);
field.add_element(0); // "speed" tag key offset
field.add_element(
std::min(speed, 127u)); // save the speed value, capped at 127
field.add_element(1); // "is_small" tag key offset
field.add_element(edge.component.is_tiny ? 0 : 1); // is_small feature
}
{
// Encode the geometry for the feature
protozero::packed_field_uint32 geometry(feature_writer, 4);
encode_linestring(tile_line, geometry, start_x, start_y);
}
}
// Repeat the above for the coordinates reversed and using the `reverse`
// properties
if (reverse_weight != 0 &&
edge.reverse_edge_based_node_id != SPECIAL_NODEID)
{
std::int32_t start_x = 0;
std::int32_t start_y = 0;
line_typed geo_line;
geo_line.emplace_back(b.lon / COORDINATE_PRECISION,
b.lat / COORDINATE_PRECISION);
geo_line.emplace_back(a.lon / COORDINATE_PRECISION,
a.lat / COORDINATE_PRECISION);
const auto speed = static_cast<const std::uint32_t>(
round(length / reverse_weight * 10 * 3.6));
line_type tile_line;
for (auto const &pt : geo_line)
{
double px_merc = pt.x;
double py_merc = pt.y;
lonlat2merc(px_merc, py_merc);
// convert to integer tile coordinat
const auto px = std::round(((px_merc - tile_bbox.minx) * tile_extent /
16.0 / tile_bbox.width()) *
tile_extent / 256.0);
const auto py = std::round(((tile_bbox.maxy - py_merc) * tile_extent /
16.0 / tile_bbox.height()) *
tile_extent / 256.0);
tile_line.emplace_back(px, py);
}
protozero::pbf_writer feature_writer(layer_writer, 2);
feature_writer.add_enum(3, 2); // geometry type
feature_writer.add_uint64(1, id++); // id
{
protozero::packed_field_uint32 field(feature_writer, 2);
field.add_element(0); // "speed" tag key offset
field.add_element(
std::min(speed, 127u)); // save the speed value, capped at 127
field.add_element(1); // "is_small" tag key offset
field.add_element(edge.component.is_tiny ? 0 : 1); // is_small feature
}
{
protozero::packed_field_uint32 geometry(feature_writer, 4);
encode_linestring(tile_line, geometry, start_x, start_y);
}
}
}
}
// Field id 3 is the "keys" attribute
// We need two "key" fields, these are referred to with 0 and 1 (their array indexes)
// earlier
layer_writer.add_string(3, "speed");
layer_writer.add_string(3, "is_small");
// Now, we write out the possible speed value arrays and possible is_tiny
// values. Field type 4 is the "values" field. It's a variable type field,
// so requires a two-step write (create the field, then write its value)
for (std::size_t i = 0; i < 128; i++)
{
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 5 == uin64 type
values_writer.add_uint64(5, i);
}
}
{
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 7 == bool type
values_writer.add_bool(7, true);
}
{
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 7 == bool type
values_writer.add_bool(7, false);
}
}
// Encode the PBF result as a special Buffer object on the response.
// This will allow downstream consumers to handle this type differently
// to the String type.
json_result.values["pbf"] = osrm::util::json::Buffer(buffer);
return Status::Ok;
}
private:
DataFacadeT *const facade;
const std::string descriptor_string;
Status HandleRequest(const api::TileParameters &parameters, std::string &pbf_buffer);
};
}
}

View File

@ -9,7 +9,7 @@
//#include "engine/plugins/timestamp.hpp"
#include "engine/plugins/trip.hpp"
#include "engine/plugins/viaroute.hpp"
//#include "engine/plugins/tile.hpp"
#include "engine/plugins/tile.hpp"
#include "engine/plugins/match.hpp"
#include "engine/datafacade/datafacade_base.hpp"
@ -87,16 +87,16 @@ namespace
{
// Abstracted away the query locking into a template function
// Works the same for every plugin.
template <typename ParameterT, typename PluginT>
template <typename ParameterT, typename PluginT, typename ResultT>
osrm::engine::Status RunQuery(const std::unique_ptr<osrm::engine::Engine::EngineLock> &lock,
osrm::engine::datafacade::BaseDataFacade &facade,
const ParameterT &parameters,
PluginT &plugin,
osrm::util::json::Object &json_result)
ResultT &result)
{
if (!lock)
{
return plugin.HandleRequest(parameters, json_result);
return plugin.HandleRequest(parameters, result);
}
BOOST_ASSERT(lock);
@ -108,7 +108,7 @@ osrm::engine::Status RunQuery(const std::unique_ptr<osrm::engine::Engine::Engine
// things while the query is running
boost::shared_lock<boost::shared_mutex> data_lock{shared_facade.data_mutex};
osrm::engine::Status status = plugin.HandleRequest(parameters, json_result);
osrm::engine::Status status = plugin.HandleRequest(parameters, result);
lock->DecreaseQueryCount();
return status;
@ -148,6 +148,7 @@ Engine::Engine(EngineConfig &config)
nearest_plugin = create<NearestPlugin>(*query_data_facade);
trip_plugin = create<TripPlugin>(*query_data_facade, config.max_locations_trip);
match_plugin = create<MatchPlugin>(*query_data_facade, config.max_locations_map_matching);
tile_plugin = create<TilePlugin>(*query_data_facade);
}
// make sure we deallocate the unique ptr at a position where we know the size of the plugins
@ -180,5 +181,10 @@ Status Engine::Match(const api::MatchParameters &params, util::json::Object &res
return RunQuery(lock, *query_data_facade, params, *match_plugin, result);
}
Status Engine::Tile(const api::TileParameters &params, std::string &result)
{
return RunQuery(lock, *query_data_facade, params, *tile_plugin, result);
}
} // engine ns
} // osrm ns

393
src/engine/plugins/tile.cpp Normal file
View File

@ -0,0 +1,393 @@
#include "engine/plugins/plugin_base.hpp"
#include "engine/plugins/tile.hpp"
#include <protozero/varint.hpp>
#include <protozero/pbf_writer.hpp>
#include <string>
#include <vector>
#include <utility>
#include <cmath>
#include <cstdint>
namespace osrm
{
namespace engine
{
namespace plugins
{
// from mapnik/well_known_srs.hpp
const constexpr double EARTH_RADIUS = 6378137.0;
const constexpr double EARTH_DIAMETER = EARTH_RADIUS * 2.0;
const constexpr double EARTH_CIRCUMFERENCE = EARTH_DIAMETER * M_PI;
const constexpr double MAXEXTENT = EARTH_CIRCUMFERENCE / 2.0;
const constexpr double M_PI_by2 = M_PI / 2.0;
const constexpr double D2R = M_PI / 180.0;
const constexpr double R2D = 180.0 / M_PI;
const constexpr double M_PIby360 = M_PI / 360.0;
const constexpr double MAXEXTENTby180 = MAXEXTENT / 180.0;
const double MAX_LATITUDE = R2D * (2.0 * std::atan(std::exp(180.0 * D2R)) - M_PI_by2);
// ^ math functions are not constexpr since they have side-effects (setting errno) :(
// from mapnik-vector-tile
namespace detail_pbf
{
inline unsigned encode_length(const unsigned len) { return (len << 3u) | 2u; }
}
// Converts a regular WSG84 lon/lat pair into
// a mercator coordinate
inline void lonlat2merc(double &x, double &y)
{
if (x > 180)
x = 180;
else if (x < -180)
x = -180;
if (y > MAX_LATITUDE)
y = MAX_LATITUDE;
else if (y < -MAX_LATITUDE)
y = -MAX_LATITUDE;
x = x * MAXEXTENTby180;
y = std::log(std::tan((90 + y) * M_PIby360)) * R2D;
y = y * MAXEXTENTby180;
}
// This is the global default tile size for all Mapbox Vector Tiles
const constexpr double tile_size_ = 256.0;
//
inline void from_pixels(const double shift, double &x, double &y)
{
const double b = shift / 2.0;
x = (x - b) / (shift / 360.0);
const double g = (y - b) / -(shift / (2 * M_PI));
y = R2D * (2.0 * std::atan(std::exp(g)) - M_PI_by2);
}
// Converts a WMS tile coordinate (z,x,y) into a mercator bounding box
inline void xyz2mercator(
const int x, const int y, const int z, double &minx, double &miny, double &maxx, double &maxy)
{
minx = x * tile_size_;
miny = (y + 1.0) * tile_size_;
maxx = (x + 1.0) * tile_size_;
maxy = y * tile_size_;
const double shift = std::pow(2.0, z) * tile_size_;
from_pixels(shift, minx, miny);
from_pixels(shift, maxx, maxy);
lonlat2merc(minx, miny);
lonlat2merc(maxx, maxy);
}
// Converts a WMS tile coordinate (z,x,y) into a wsg84 bounding box
inline void xyz2wsg84(
const int x, const int y, const int z, double &minx, double &miny, double &maxx, double &maxy)
{
minx = x * tile_size_;
miny = (y + 1.0) * tile_size_;
maxx = (x + 1.0) * tile_size_;
maxy = y * tile_size_;
const double shift = std::pow(2.0, z) * tile_size_;
from_pixels(shift, minx, miny);
from_pixels(shift, maxx, maxy);
}
// emulates mapbox::box2d, just a simple container for
// a box
struct bbox final
{
bbox(const double _minx, const double _miny, const double _maxx, const double _maxy)
: minx(_minx), miny(_miny), maxx(_maxx), maxy(_maxy)
{
}
double width() const { return maxx - minx; }
double height() const { return maxy - miny; }
const double minx;
const double miny;
const double maxx;
const double maxy;
};
// Simple container class for WSG84 coordinates
struct point_type_d final
{
point_type_d(double _x, double _y) : x(_x), y(_y) {}
const double x;
const double y;
};
// Simple container for integer coordinates (i.e. pixel coords)
struct point_type_i final
{
point_type_i(std::int64_t _x, std::int64_t _y) : x(_x), y(_y) {}
const std::int64_t x;
const std::int64_t y;
};
using line_type = std::vector<point_type_i>;
using line_typed = std::vector<point_type_d>;
// from mapnik-vector-tile
// Encodes a linestring using protobuf zigzag encoding
inline bool encode_linestring(line_type line,
protozero::packed_field_uint32 &geometry,
std::int32_t &start_x,
std::int32_t &start_y)
{
const std::size_t line_size = line.size();
if (line_size < 2)
{
return false;
}
const unsigned line_to_length = static_cast<const unsigned>(line_size) - 1;
auto pt = line.begin();
geometry.add_element(9); // move_to | (1 << 3)
geometry.add_element(protozero::encode_zigzag32(pt->x - start_x));
geometry.add_element(protozero::encode_zigzag32(pt->y - start_y));
start_x = pt->x;
start_y = pt->y;
geometry.add_element(detail_pbf::encode_length(line_to_length));
for (++pt; pt != line.end(); ++pt)
{
const std::int32_t dx = pt->x - start_x;
const std::int32_t dy = pt->y - start_y;
geometry.add_element(protozero::encode_zigzag32(dx));
geometry.add_element(protozero::encode_zigzag32(dy));
start_x = pt->x;
start_y = pt->y;
}
return true;
}
Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::string &pbf_buffer)
{
// Vector tiles are 4096 virtual pixels on each side
const double tile_extent = 4096.0;
double min_lon, min_lat, max_lon, max_lat;
// Convert the z,x,y mercator tile coordinates into WSG84 lon/lat values
xyz2wsg84(parameters.x, parameters.y, parameters.z, min_lon, min_lat, max_lon, max_lat);
util::Coordinate southwest{util::FloatLongitude(min_lon), util::FloatLatitude(min_lat)};
util::Coordinate northeast{util::FloatLongitude(max_lon), util::FloatLatitude(max_lat)};
// Fetch all the segments that are in our bounding box.
// This hits the OSRM StaticRTree
const auto edges = facade.GetEdgesInBox(southwest, northeast);
// TODO: extract speed values for compressed and uncompressed geometries
// Convert tile coordinates into mercator coordinates
xyz2mercator(parameters.x, parameters.y, parameters.z, min_lon, min_lat, max_lon, max_lat);
const bbox tile_bbox{min_lon, min_lat, max_lon, max_lat};
// Protobuf serialized blocks when objects go out of scope, hence
// the extra scoping below.
protozero::pbf_writer tile_writer{pbf_buffer};
{
// Add a layer object to the PBF stream. 3=='layer' from the vector tile spec (2.1)
protozero::pbf_writer layer_writer(tile_writer, 3);
// TODO: don't write a layer if there are no features
layer_writer.add_uint32(15, 2); // version
// Field 1 is the "layer name" field, it's a string
layer_writer.add_string(1, "speeds"); // name
// Field 5 is the tile extent. It's a uint32 and should be set to 4096
// for normal vector tiles.
layer_writer.add_uint32(5, 4096); // extent
// Begin the layer features block
{
// Each feature gets a unique id, starting at 1
unsigned id = 1;
for (const auto &edge : edges)
{
// Get coordinates for start/end nodes of segmet (NodeIDs u and v)
const auto a = facade.GetCoordinateOfNode(edge.u);
const auto b = facade.GetCoordinateOfNode(edge.v);
// Calculate the length in meters
const double length = osrm::util::coordinate_calculation::haversineDistance(a, b);
int forward_weight = 0;
int reverse_weight = 0;
if (edge.forward_packed_geometry_id != SPECIAL_EDGEID)
{
std::vector<EdgeWeight> forward_weight_vector;
facade.GetUncompressedWeights(edge.forward_packed_geometry_id,
forward_weight_vector);
forward_weight = forward_weight_vector[edge.fwd_segment_position];
}
if (edge.reverse_packed_geometry_id != SPECIAL_EDGEID)
{
std::vector<EdgeWeight> reverse_weight_vector;
facade.GetUncompressedWeights(edge.reverse_packed_geometry_id,
reverse_weight_vector);
BOOST_ASSERT(edge.fwd_segment_position < reverse_weight_vector.size());
reverse_weight = reverse_weight_vector[reverse_weight_vector.size() -
edge.fwd_segment_position - 1];
}
// If this is a valid forward edge, go ahead and add it to the tile
if (forward_weight != 0 && edge.forward_edge_based_node_id != SPECIAL_NODEID)
{
std::int32_t start_x = 0;
std::int32_t start_y = 0;
line_typed geo_line;
geo_line.emplace_back(static_cast<double>(util::toFloating(a.lon)),
static_cast<double>(util::toFloating(a.lat)));
geo_line.emplace_back(static_cast<double>(util::toFloating(b.lon)),
static_cast<double>(util::toFloating(b.lat)));
// Calculate the speed for this line
std::uint32_t speed =
static_cast<std::uint32_t>(round(length / forward_weight * 10 * 3.6));
line_type tile_line;
for (auto const &pt : geo_line)
{
double px_merc = pt.x;
double py_merc = pt.y;
lonlat2merc(px_merc, py_merc);
// convert lon/lat to tile coordinates
const auto px = std::round(
((px_merc - tile_bbox.minx) * tile_extent / 16.0 / tile_bbox.width()) *
tile_extent / 256.0);
const auto py = std::round(
((tile_bbox.maxy - py_merc) * tile_extent / 16.0 / tile_bbox.height()) *
tile_extent / 256.0);
tile_line.emplace_back(px, py);
}
// Here, we save the two attributes for our feature: the speed and the
// is_small
// boolean. We onl serve up speeds from 0-139, so all we do is save the
// first
protozero::pbf_writer feature_writer(layer_writer, 2);
// Field 3 is the "geometry type" field. Value 2 is "line"
feature_writer.add_enum(3, 2); // geometry type
// Field 1 for the feature is the "id" field.
feature_writer.add_uint64(1, id++); // id
{
// When adding attributes to a feature, we have to write
// pairs of numbers. The first value is the index in the
// keys array (written later), and the second value is the
// index into the "values" array (also written later). We're
// not writing the actual speed or bool value here, we're saving
// an index into the "values" array. This means many features
// can share the same value data, leading to smaller tiles.
protozero::packed_field_uint32 field(feature_writer, 2);
field.add_element(0); // "speed" tag key offset
field.add_element(
std::min(speed, 127u)); // save the speed value, capped at 127
field.add_element(1); // "is_small" tag key offset
field.add_element(edge.component.is_tiny ? 0 : 1); // is_small feature
}
{
// Encode the geometry for the feature
protozero::packed_field_uint32 geometry(feature_writer, 4);
encode_linestring(tile_line, geometry, start_x, start_y);
}
}
// Repeat the above for the coordinates reversed and using the `reverse`
// properties
if (reverse_weight != 0 && edge.reverse_edge_based_node_id != SPECIAL_NODEID)
{
std::int32_t start_x = 0;
std::int32_t start_y = 0;
line_typed geo_line;
geo_line.emplace_back(static_cast<double>(util::toFloating(b.lon)),
static_cast<double>(util::toFloating(b.lat)));
geo_line.emplace_back(static_cast<double>(util::toFloating(a.lon)),
static_cast<double>(util::toFloating(a.lat)));
const auto speed =
static_cast<const std::uint32_t>(round(length / reverse_weight * 10 * 3.6));
line_type tile_line;
for (auto const &pt : geo_line)
{
double px_merc = pt.x;
double py_merc = pt.y;
lonlat2merc(px_merc, py_merc);
// convert to integer tile coordinat
const auto px = std::round(
((px_merc - tile_bbox.minx) * tile_extent / 16.0 / tile_bbox.width()) *
tile_extent / 256.0);
const auto py = std::round(
((tile_bbox.maxy - py_merc) * tile_extent / 16.0 / tile_bbox.height()) *
tile_extent / 256.0);
tile_line.emplace_back(px, py);
}
protozero::pbf_writer feature_writer(layer_writer, 2);
feature_writer.add_enum(3, 2); // geometry type
feature_writer.add_uint64(1, id++); // id
{
protozero::packed_field_uint32 field(feature_writer, 2);
field.add_element(0); // "speed" tag key offset
field.add_element(
std::min(speed, 127u)); // save the speed value, capped at 127
field.add_element(1); // "is_small" tag key offset
field.add_element(edge.component.is_tiny ? 0 : 1); // is_small feature
}
{
protozero::packed_field_uint32 geometry(feature_writer, 4);
encode_linestring(tile_line, geometry, start_x, start_y);
}
}
}
}
// Field id 3 is the "keys" attribute
// We need two "key" fields, these are referred to with 0 and 1 (their array indexes)
// earlier
layer_writer.add_string(3, "speed");
layer_writer.add_string(3, "is_small");
// Now, we write out the possible speed value arrays and possible is_tiny
// values. Field type 4 is the "values" field. It's a variable type field,
// so requires a two-step write (create the field, then write its value)
for (std::size_t i = 0; i < 128; i++)
{
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 5 == uin64 type
values_writer.add_uint64(5, i);
}
}
{
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 7 == bool type
values_writer.add_bool(7, true);
}
{
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 7 == bool type
values_writer.add_bool(7, false);
}
}
return Status::Ok;
}
}
}
}