Include turn information in debug tiles.

This commit is contained in:
Lauren Budorick 2016-05-09 16:20:47 -07:00 committed by Moritz Kobitzsch
parent 6290aeea93
commit 14e7460465
7 changed files with 664 additions and 231 deletions

View File

@ -3,6 +3,8 @@
#include "engine/api/tile_parameters.hpp"
#include "engine/plugins/plugin_base.hpp"
#include "engine/routing_algorithms/routing_base.hpp"
#include "engine/routing_algorithms/shortest_path.hpp"
#include <string>
@ -23,8 +25,13 @@ namespace plugins
class TilePlugin final : public BasePlugin
{
private:
routing_algorithms::BasicRoutingInterface<
datafacade::BaseDataFacade,
routing_algorithms::ShortestPathRouting<datafacade::BaseDataFacade>> routing_base;
public:
TilePlugin(datafacade::BaseDataFacade &facade) : BasePlugin(facade) {}
TilePlugin(datafacade::BaseDataFacade &facade) : BasePlugin(facade), routing_base(&facade) {}
Status HandleRequest(const api::TileParameters &parameters, std::string &pbf_buffer);
};

View File

@ -512,6 +512,69 @@ template <class DataFacadeT, class Derived> class BasicRoutingInterface
unpacked_path.emplace_back(t);
}
/**
* A duplicate of the above `UnpackEdge` function, but returning full EdgeData
* objects for the unpacked path. Used in the tile plugin to find outgoing
* edges from a given turn.
*/
void
UnpackEdgeToEdges(const NodeID s, const NodeID t, std::vector<EdgeData> &unpacked_path) const
{
std::stack<std::pair<NodeID, NodeID>> recursion_stack;
recursion_stack.emplace(s, t);
std::pair<NodeID, NodeID> edge;
while (!recursion_stack.empty())
{
edge = recursion_stack.top();
recursion_stack.pop();
EdgeID smaller_edge_id = SPECIAL_EDGEID;
EdgeWeight edge_weight = std::numeric_limits<EdgeWeight>::max();
for (const auto edge_id : facade->GetAdjacentEdgeRange(edge.first))
{
const EdgeWeight weight = facade->GetEdgeData(edge_id).distance;
if ((facade->GetTarget(edge_id) == edge.second) && (weight < edge_weight) &&
facade->GetEdgeData(edge_id).forward)
{
smaller_edge_id = edge_id;
edge_weight = weight;
}
}
if (SPECIAL_EDGEID == smaller_edge_id)
{
for (const auto edge_id : facade->GetAdjacentEdgeRange(edge.second))
{
const EdgeWeight weight = facade->GetEdgeData(edge_id).distance;
if ((facade->GetTarget(edge_id) == edge.first) && (weight < edge_weight) &&
facade->GetEdgeData(edge_id).backward)
{
smaller_edge_id = edge_id;
edge_weight = weight;
}
}
}
BOOST_ASSERT_MSG(edge_weight != std::numeric_limits<EdgeWeight>::max(),
"edge weight invalid");
const EdgeData &ed = facade->GetEdgeData(smaller_edge_id);
if (ed.shortcut)
{ // unpack
const NodeID middle_node_id = ed.id;
// again, we need to this in reversed order
recursion_stack.emplace(middle_node_id, edge.second);
recursion_stack.emplace(edge.first, middle_node_id);
}
else
{
BOOST_ASSERT_MSG(!ed.shortcut, "edge must be shortcut");
unpacked_path.emplace_back(ed);
}
}
}
void RetrievePackedPathFromHeap(const SearchEngineData::QueryHeap &forward_heap,
const SearchEngineData::QueryHeap &reverse_heap,
const NodeID middle_node_id,

View File

@ -33,7 +33,7 @@ class CompressedEdgeContainer
const EdgeWeight weight2);
void
AddUncompressedEdge(const EdgeID edgei_id, const NodeID target_node, const EdgeWeight weight);
AddUncompressedEdge(const EdgeID edge_id, const NodeID target_node, const EdgeWeight weight);
bool HasEntryForID(const EdgeID edge_id) const;
void PrintStatistics() const;

View File

@ -85,6 +85,8 @@ static const EdgeWeight INVALID_EDGE_WEIGHT = std::numeric_limits<EdgeWeight>::m
using DatasourceID = std::uint8_t;
using DatasourceID = std::uint8_t;
struct SegmentID
{
SegmentID(const NodeID id_, const bool enabled_) : id{id_}, enabled{enabled_}

View File

@ -13,16 +13,18 @@ namespace vector_tile
const constexpr std::uint32_t LAYER_TAG = 3;
const constexpr std::uint32_t NAME_TAG = 1;
const constexpr std::uint32_t VERSION_TAG = 15;
const constexpr std::uint32_t EXTEND_TAG = 5;
const constexpr std::uint32_t EXTENT_TAG = 5;
const constexpr std::uint32_t FEATURE_TAG = 2;
const constexpr std::uint32_t GEOMETRY_TAG = 3;
const constexpr std::uint32_t VARIANT_TAG = 4;
const constexpr std::uint32_t KEY_TAG = 3;
const constexpr std::uint32_t ID_TAG = 1;
const constexpr std::uint32_t GEOMETRY_TYPE_POINT = 1;
const constexpr std::uint32_t GEOMETRY_TYPE_LINE = 2;
const constexpr std::uint32_t FEATURE_ATTRIBUTES_TAG = 2;
const constexpr std::uint32_t FEATURE_GEOMETRIES_TAG = 4;
const constexpr std::uint32_t VARIANT_TYPE_UINT32 = 5;
const constexpr std::uint32_t VARIANT_TYPE_UINT64 = 5;
const constexpr std::uint32_t VARIANT_TYPE_SINT64 = 6;
const constexpr std::uint32_t VARIANT_TYPE_BOOL = 7;
const constexpr std::uint32_t VARIANT_TYPE_STRING = 1;
const constexpr std::uint32_t VARIANT_TYPE_DOUBLE = 3;

View File

@ -16,6 +16,8 @@
#include <string>
#include <utility>
#include <vector>
#include <algorithm>
#include <numeric>
#include <cmath>
#include <cstdint>
@ -68,8 +70,23 @@ struct point_type_i final
const std::int64_t y;
};
using FixedLine = std::vector<detail::Point<std::int32_t>>;
using FloatLine = std::vector<detail::Point<double>>;
struct TurnData final
{
TurnData(std::size_t _in, std::size_t _out, std::size_t _weight)
: in_angle_offset(_in), turn_angle_offset(_out), weight_offset(_weight)
{
}
const std::size_t in_angle_offset;
const std::size_t turn_angle_offset;
const std::size_t weight_offset;
};
using FixedPoint = detail::Point<std::int32_t>;
using FloatPoint = detail::Point<double>;
using FixedLine = std::vector<FixedPoint>;
using FloatLine = std::vector<FloatPoint>;
typedef boost::geometry::model::point<double, 2, boost::geometry::cs::cartesian> point_t;
typedef boost::geometry::model::linestring<point_t> linestring_t;
@ -113,6 +130,19 @@ inline bool encodeLinestring(const FixedLine &line,
return true;
}
// from mapnik-vctor-tile
// Encodes a point
inline bool encodePoint(const FixedPoint &pt, protozero::packed_field_uint32 &geometry)
{
geometry.add_element(9);
const std::int32_t dx = pt.x;
const std::int32_t dy = pt.y;
// Manual zigzag encoding.
geometry.add_element(protozero::encode_zigzag32(dx));
geometry.add_element(protozero::encode_zigzag32(dy));
return true;
}
FixedLine coordinatesToTileLine(const util::Coordinate start,
const util::Coordinate target,
const detail::BBox &tile_bbox)
@ -162,6 +192,25 @@ FixedLine coordinatesToTileLine(const util::Coordinate start,
return tile_line;
}
FixedPoint coordinatesToTilePoint(const util::Coordinate point, const detail::BBox &tile_bbox)
{
const FloatPoint geo_point{static_cast<double>(util::toFloating(point.lon)),
static_cast<double>(util::toFloating(point.lat))};
const double px_merc = geo_point.x * util::web_mercator::DEGREE_TO_PX;
const double py_merc = util::web_mercator::latToY(util::FloatLatitude{geo_point.y}) *
util::web_mercator::DEGREE_TO_PX;
const auto px = static_cast<std::int32_t>(std::round(
((px_merc - tile_bbox.minx) * util::web_mercator::TILE_SIZE / tile_bbox.width()) *
util::vector_tile::EXTENT / util::web_mercator::TILE_SIZE));
const auto py = static_cast<std::int32_t>(std::round(
((tile_bbox.maxy - py_merc) * util::web_mercator::TILE_SIZE / tile_bbox.height()) *
util::vector_tile::EXTENT / util::web_mercator::TILE_SIZE));
return FixedPoint{px, py};
}
}
Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::string &pbf_buffer)
@ -181,12 +230,49 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
// This hits the OSRM StaticRTree
const auto edges = facade.GetEdgesInBox(southwest, northeast);
std::vector<int> used_weights;
std::unordered_map<int, std::size_t> weight_offsets;
std::vector<int> used_line_ints;
std::unordered_map<int, std::size_t> line_int_offsets;
uint8_t max_datasource_id = 0;
std::vector<std::string> names;
std::unordered_map<std::string, std::size_t> name_offsets;
std::vector<int> used_point_ints;
std::unordered_map<int, std::size_t> point_int_offsets;
std::vector<std::vector<detail::TurnData>> all_turn_data;
const auto use_line_value = [&used_line_ints, &line_int_offsets](const int &value)
{
const auto found = line_int_offsets.find(value);
if (found == line_int_offsets.end())
{
used_line_ints.push_back(value);
line_int_offsets[value] = used_line_ints.size() - 1;
}
return;
};
const auto use_point_value = [&used_point_ints, &point_int_offsets](const int &value)
{
const auto found = point_int_offsets.find(value);
std::size_t offset;
if (found == point_int_offsets.end())
{
used_point_ints.push_back(value);
offset = used_point_ints.size() - 1;
point_int_offsets[value] = offset;
}
else
{
offset = found->second;
}
return offset;
};
// Loop over all edges once to tally up all the attributes we'll need.
// We need to do this so that we know the attribute offsets to use
// when we encode each feature in the tile.
@ -195,6 +281,9 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
int forward_weight = 0, reverse_weight = 0;
uint8_t forward_datasource = 0;
uint8_t reverse_datasource = 0;
std::vector<detail::TurnData> edge_turn_data;
// TODO this approach of writing at least an empty vector for any segment is probably stupid
// (inefficient)
if (edge.forward_packed_geometry_id != SPECIAL_EDGEID)
{
@ -207,10 +296,98 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
forward_datasource_vector);
forward_datasource = forward_datasource_vector[edge.fwd_segment_position];
if (weight_offsets.find(forward_weight) == weight_offsets.end())
use_line_value(forward_weight);
std::vector<NodeID> forward_node_vector;
facade.GetUncompressedGeometry(edge.forward_packed_geometry_id, forward_node_vector);
// If this is the last segment on an edge (i.e. leads to an intersection), find outgoing
// turns to write the turns point layer.
if (edge.fwd_segment_position == forward_node_vector.size() - 1)
{
used_weights.push_back(forward_weight);
weight_offsets[forward_weight] = used_weights.size() - 1;
const auto sum_node_weight =
std::accumulate(forward_weight_vector.begin(), forward_weight_vector.end(), 0);
// coord_a will be the OSM node immediately preceding the intersection, on the
// current edge
const auto coord_a = facade.GetCoordinateOfNode(
forward_node_vector.size() > 1
? forward_node_vector[forward_node_vector.size() - 2]
: edge.u);
// coord_b is the OSM intersection node, at the end of the current edge
const auto coord_b = facade.GetCoordinateOfNode(edge.v);
// There will often be multiple c_nodes. Here, we start by getting all outgoing
// shortcuts, which we can whittle down (and deduplicate) to just the edges
// immediately following intersections.
// NOTE: the approach of only using shortcuts means that we aren't
// getting or writing *every* turn here, but we don't especially care about turns
// that will never be returned in a route anyway.
std::unordered_map<NodeID, int> c_nodes;
for (const auto adj_shortcut :
facade.GetAdjacentEdgeRange(edge.forward_segment_id.id))
{
std::vector<contractor::QueryEdge::EdgeData> unpacked_shortcut;
// Outgoing shortcuts without `forward` travel enabled: do not want
if (!facade.GetEdgeData(adj_shortcut).forward)
{
continue;
}
routing_base.UnpackEdgeToEdges(edge.forward_segment_id.id,
facade.GetTarget(adj_shortcut),
unpacked_shortcut);
// Sometimes a "shortcut" is just an edge itself: this will not return a turn
if (unpacked_shortcut.size() < 2)
{
continue;
}
// Unpack the data from the second edge (the first edge will be the edge
// we're currently on), to use its geometry in calculating angle
const auto first_geometry_id =
facade.GetGeometryIndexForEdgeID(unpacked_shortcut[1].id);
std::vector<NodeID> first_geometry_vector;
facade.GetUncompressedGeometry(first_geometry_id, first_geometry_vector);
// EBE weight (the first edge in this shortcut) - EBN weight (calculated
// above by summing the distance of the current node-based edge) = turn weight
const auto sum_edge_weight = unpacked_shortcut[0].distance;
const auto turn_weight = sum_edge_weight - sum_node_weight;
c_nodes.emplace(first_geometry_vector.front(), turn_weight);
}
const auto angle_in =
static_cast<int>(util::coordinate_calculation::bearing(coord_a, coord_b));
// Only write for those that have angles out
if (c_nodes.size() > 0)
{
const auto angle_in_offset = use_point_value(angle_in);
for (const auto possible_next_node : c_nodes)
{
const auto coord_c = facade.GetCoordinateOfNode(possible_next_node.first);
const auto c_bearing = static_cast<int>(
util::coordinate_calculation::bearing(coord_b, coord_c));
auto turn_angle = c_bearing - angle_in;
while (turn_angle > 180) { turn_angle -= 360; }
while (turn_angle < -180) { turn_angle += 360; }
const auto turn_angle_offset = use_point_value(turn_angle);
const auto angle_weight_offset = use_point_value(possible_next_node.second);
// TODO this is not as efficient as it could be because of repeated
// angles_in
edge_turn_data.emplace_back(detail::TurnData{
angle_in_offset, turn_angle_offset, angle_weight_offset});
}
}
}
}
@ -224,11 +401,8 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
reverse_weight =
reverse_weight_vector[reverse_weight_vector.size() - edge.fwd_segment_position - 1];
if (weight_offsets.find(reverse_weight) == weight_offsets.end())
{
used_weights.push_back(reverse_weight);
weight_offsets[reverse_weight] = used_weights.size() - 1;
}
use_line_value(reverse_weight);
std::vector<uint8_t> reverse_datasource_vector;
facade.GetUncompressedDatasources(edge.reverse_packed_geometry_id,
reverse_datasource_vector);
@ -240,13 +414,15 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
max_datasource_id = std::max(max_datasource_id, forward_datasource);
max_datasource_id = std::max(max_datasource_id, reverse_datasource);
std::string name = facade.GetNameForID(edge.name_id);
std::string name = facade.GetNameForID(edge.name_id);
if (name_offsets.find(name) == name_offsets.end())
{
names.push_back(name);
name_offsets[name] = names.size() - 1;
}
all_turn_data.emplace_back(std::move(edge_turn_data));
}
// TODO: extract speed values for compressed and uncompressed geometries
@ -256,20 +432,22 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
parameters.x, parameters.y, parameters.z, min_lon, min_lat, max_lon, max_lat);
const detail::BBox tile_bbox{min_lon, min_lat, max_lon, max_lat};
// Protobuf serialized blocks when objects go out of scope, hence
// Protobuf serializes blocks when objects go out of scope, hence
// the extra scoping below.
protozero::pbf_writer tile_writer{pbf_buffer};
{
{
// Add a layer object to the PBF stream. 3=='layer' from the vector tile spec (2.1)
protozero::pbf_writer layer_writer(tile_writer, util::vector_tile::LAYER_TAG);
protozero::pbf_writer line_layer_writer(tile_writer, util::vector_tile::LAYER_TAG);
// TODO: don't write a layer if there are no features
layer_writer.add_uint32(util::vector_tile::VERSION_TAG, 2); // version
line_layer_writer.add_uint32(util::vector_tile::VERSION_TAG, 2); // version
// Field 1 is the "layer name" field, it's a string
layer_writer.add_string(util::vector_tile::NAME_TAG, "speeds"); // name
line_layer_writer.add_string(util::vector_tile::NAME_TAG, "speeds"); // name
// Field 5 is the tile extent. It's a uint32 and should be set to 4096
// for normal vector tiles.
layer_writer.add_uint32(util::vector_tile::EXTEND_TAG, util::vector_tile::EXTENT); // extent
line_layer_writer.add_uint32(util::vector_tile::EXTENT_TAG,
util::vector_tile::EXTENT); // extent
// Begin the layer features block
{
@ -277,11 +455,12 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
unsigned id = 1;
for (const auto &edge : edges)
{
// Get coordinates for start/end nodes of segmet (NodeIDs u and v)
// Get coordinates for start/end nodes of segment (NodeIDs u and v)
const auto a = facade.GetCoordinateOfNode(edge.u);
const auto b = facade.GetCoordinateOfNode(edge.v);
// Calculate the length in meters
const double length = osrm::util::coordinate_calculation::haversineDistance(a, b);
const double length =
osrm::util::coordinate_calculation::haversineDistance(a, b);
int forward_weight = 0;
int reverse_weight = 0;
@ -328,25 +507,27 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
max_datasource_id = std::max(max_datasource_id, forward_datasource);
max_datasource_id = std::max(max_datasource_id, reverse_datasource);
const auto encode_tile_line = [&layer_writer,
const auto encode_tile_line = [&line_layer_writer,
&edge,
&id,
&max_datasource_id,
&used_weights](const detail::FixedLine &tile_line,
&used_line_ints](const detail::FixedLine &tile_line,
const std::uint32_t speed_kmh,
const std::size_t duration,
const DatasourceID datasource,
const std::size_t name,
std::int32_t &start_x,
std::int32_t &start_y) {
std::int32_t &start_y)
{
// Here, we save the two attributes for our feature: the speed and the
// is_small
// boolean. We onl serve up speeds from 0-139, so all we do is save the
// boolean. We only serve up speeds from 0-139, so all we do is save the
// first
protozero::pbf_writer feature_writer(layer_writer,
protozero::pbf_writer feature_writer(line_layer_writer,
util::vector_tile::FEATURE_TAG);
// Field 3 is the "geometry type" field. Value 2 is "line"
feature_writer.add_enum(util::vector_tile::GEOMETRY_TAG,
feature_writer.add_enum(
util::vector_tile::GEOMETRY_TAG,
util::vector_tile::GEOMETRY_TYPE_LINE); // geometry type
// Field 1 for the feature is the "id" field.
feature_writer.add_uint64(util::vector_tile::ID_TAG, id++); // id
@ -374,7 +555,7 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
duration); // duration value offset
field.add_element(4); // "name" tag key offset
field.add_element(130 + max_datasource_id + 1 + used_weights.size() +
field.add_element(130 + max_datasource_id + 1 + used_line_ints.size() +
name); // name value offset
}
{
@ -401,7 +582,7 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
{
encode_tile_line(tile_line,
speed_kmh,
weight_offsets[forward_weight],
line_int_offsets[forward_weight],
forward_datasource,
name_offsets[name],
start_x,
@ -425,7 +606,7 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
{
encode_tile_line(tile_line,
speed_kmh,
weight_offsets[reverse_weight],
line_int_offsets[reverse_weight],
reverse_datasource,
name_offsets[name],
start_x,
@ -438,11 +619,11 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
// Field id 3 is the "keys" attribute
// We need two "key" fields, these are referred to with 0 and 1 (their array indexes)
// earlier
layer_writer.add_string(util::vector_tile::KEY_TAG, "speed");
layer_writer.add_string(util::vector_tile::KEY_TAG, "is_small");
layer_writer.add_string(util::vector_tile::KEY_TAG, "datasource");
layer_writer.add_string(util::vector_tile::KEY_TAG, "duration");
layer_writer.add_string(util::vector_tile::KEY_TAG, "name");
line_layer_writer.add_string(util::vector_tile::KEY_TAG, "speed");
line_layer_writer.add_string(util::vector_tile::KEY_TAG, "is_small");
line_layer_writer.add_string(util::vector_tile::KEY_TAG, "datasource");
line_layer_writer.add_string(util::vector_tile::KEY_TAG, "duration");
line_layer_writer.add_string(util::vector_tile::KEY_TAG, "name");
// Now, we write out the possible speed value arrays and possible is_tiny
// values. Field type 4 is the "values" field. It's a variable type field,
@ -450,47 +631,155 @@ Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::str
for (std::size_t i = 0; i < 128; i++)
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, util::vector_tile::VARIANT_TAG);
// Attribute value 5 == uin64 type
values_writer.add_uint64(util::vector_tile::VARIANT_TYPE_UINT32, i);
protozero::pbf_writer values_writer(line_layer_writer,
util::vector_tile::VARIANT_TAG);
// Attribute value 5 == uint64 type
values_writer.add_uint64(util::vector_tile::VARIANT_TYPE_UINT64, i);
}
{
protozero::pbf_writer values_writer(layer_writer, util::vector_tile::VARIANT_TAG);
protozero::pbf_writer values_writer(line_layer_writer,
util::vector_tile::VARIANT_TAG);
// Attribute value 7 == bool type
values_writer.add_bool(util::vector_tile::VARIANT_TYPE_BOOL, true);
}
{
protozero::pbf_writer values_writer(layer_writer, util::vector_tile::VARIANT_TAG);
protozero::pbf_writer values_writer(line_layer_writer,
util::vector_tile::VARIANT_TAG);
// Attribute value 7 == bool type
values_writer.add_bool(util::vector_tile::VARIANT_TYPE_BOOL, false);
}
for (std::size_t i = 0; i <= max_datasource_id; i++)
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, util::vector_tile::VARIANT_TAG);
protozero::pbf_writer values_writer(line_layer_writer,
util::vector_tile::VARIANT_TAG);
// Attribute value 1 == string type
values_writer.add_string(util::vector_tile::VARIANT_TYPE_STRING,
facade.GetDatasourceName(i));
}
for (auto weight : used_weights)
for (auto value : used_line_ints)
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, util::vector_tile::VARIANT_TAG);
protozero::pbf_writer values_writer(line_layer_writer,
util::vector_tile::VARIANT_TAG);
// Attribute value 2 == float type
// Durations come out of OSRM in integer deciseconds, so we convert them
// to seconds with a simple /10 for display
values_writer.add_double(util::vector_tile::VARIANT_TYPE_DOUBLE, weight / 10.);
values_writer.add_double(util::vector_tile::VARIANT_TYPE_DOUBLE, value / 10.);
}
for (const auto &name : names)
{
for (const auto &name : names) {
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, util::vector_tile::VARIANT_TAG);
protozero::pbf_writer values_writer(line_layer_writer, util::vector_tile::VARIANT_TAG);
// Attribute value 1 == string type
values_writer.add_string(util::vector_tile::VARIANT_TYPE_STRING, name);
}
}
{
// Now write the points layer for turn penalty data:
// Add a layer object to the PBF stream. 3=='layer' from the vector tile spec (2.1)
protozero::pbf_writer point_layer_writer(tile_writer, util::vector_tile::LAYER_TAG);
// TODO: don't write a layer if there are no features
point_layer_writer.add_uint32(util::vector_tile::VERSION_TAG, 2); // version
// Field 1 is the "layer name" field, it's a string
point_layer_writer.add_string(util::vector_tile::NAME_TAG, "turns"); // name
// Field 5 is the tile extent. It's a uint32 and should be set to 4096
// for normal vector tiles.
point_layer_writer.add_uint32(util::vector_tile::EXTENT_TAG,
util::vector_tile::EXTENT); // extent
// Begin the layer features block
{
// Each feature gets a unique id, starting at 1
unsigned id = 1;
for (uint64_t i = 0; i < edges.size(); i++)
{
const auto &edge = edges[i];
const auto &edge_turn_data = all_turn_data[i];
// Skip writing for edges with no turn penalty data
if (edge_turn_data.empty())
{
continue;
}
std::vector<NodeID> forward_node_vector;
facade.GetUncompressedGeometry(edge.forward_packed_geometry_id,
forward_node_vector);
// Skip writing for non-intersection segments
if (edge.fwd_segment_position != forward_node_vector.size() - 1)
{
continue;
}
const auto encode_tile_point =
[&point_layer_writer, &edge, &id](const detail::FixedPoint &tile_point,
const detail::TurnData &point_turn_data)
{
protozero::pbf_writer feature_writer(point_layer_writer,
util::vector_tile::FEATURE_TAG);
// Field 3 is the "geometry type" field. Value 1 is "point"
feature_writer.add_enum(
util::vector_tile::GEOMETRY_TAG,
util::vector_tile::GEOMETRY_TYPE_POINT); // geometry type
// Field 1 for the feature is the "id" field.
feature_writer.add_uint64(util::vector_tile::ID_TAG, id++); // id
{
// See above for explanation
protozero::packed_field_uint32 field(
feature_writer, util::vector_tile::FEATURE_ATTRIBUTES_TAG);
field.add_element(0); // "bearing_in" tag key offset
field.add_element(point_turn_data.in_angle_offset);
field.add_element(1); // "turn_angle" tag key offset
field.add_element(point_turn_data.turn_angle_offset);
field.add_element(2); // "weight" tag key offset
field.add_element(point_turn_data.weight_offset);
}
{
protozero::packed_field_uint32 geometry(
feature_writer, util::vector_tile::FEATURE_GEOMETRIES_TAG);
encodePoint(tile_point, geometry);
}
};
const auto turn_coordinate = facade.GetCoordinateOfNode(edge.v);
const auto tile_point = coordinatesToTilePoint(turn_coordinate, tile_bbox);
if (!boost::geometry::within(detail::point_t(tile_point.x, tile_point.y),
detail::clip_box))
{
continue;
}
for (const auto &individual_turn : edge_turn_data)
{
encode_tile_point(tile_point, individual_turn);
}
}
}
// Field id 3 is the "keys" attribute
// We need two "key" fields, these are referred to with 0 and 1 (their array indexes)
// earlier
point_layer_writer.add_string(util::vector_tile::KEY_TAG, "bearing_in");
point_layer_writer.add_string(util::vector_tile::KEY_TAG, "turn_angle");
point_layer_writer.add_string(util::vector_tile::KEY_TAG, "weight");
// Now, we write out the possible integer values.
for (const auto &value : used_point_ints)
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(point_layer_writer,
util::vector_tile::VARIANT_TAG);
// Attribute value 6 == sint64 type
values_writer.add_sint64(util::vector_tile::VARIANT_TYPE_SINT64, value);
}
}
}
return Status::Ok;
}
}

View File

@ -91,15 +91,19 @@ BOOST_AUTO_TEST_CASE(test_tile)
case util::vector_tile::VARIANT_TYPE_STRING:
value.get_string();
break;
case util::vector_tile::VARIANT_TYPE_UINT32:
value.get_uint32();
case util::vector_tile::VARIANT_TYPE_UINT64:
value.get_uint64();
break;
case util::vector_tile::VARIANT_TYPE_SINT64:
value.get_sint64();
break;
}
}
};
auto number_of_keys = 0u;
auto number_of_values = 0u;
auto number_of_speed_keys = 0u;
auto number_of_speed_values = 0u;
while (layer_message.next())
{
@ -111,19 +115,19 @@ BOOST_AUTO_TEST_CASE(test_tile)
case util::vector_tile::NAME_TAG:
BOOST_CHECK_EQUAL(layer_message.get_string(), "speeds");
break;
case util::vector_tile::EXTEND_TAG:
case util::vector_tile::EXTENT_TAG:
BOOST_CHECK_EQUAL(layer_message.get_uint32(), util::vector_tile::EXTENT);
break;
case util::vector_tile::FEATURE_TAG:
check_feature(layer_message.get_message());
check_speed_feature(layer_message.get_message());
break;
case util::vector_tile::KEY_TAG:
layer_message.get_string();
number_of_keys++;
number_of_speed_keys++;
break;
case util::vector_tile::VARIANT_TAG:
check_value(layer_message.get_message());
number_of_values++;
number_of_speed_values++;
break;
default:
BOOST_CHECK(false); // invalid tag
@ -131,8 +135,74 @@ BOOST_AUTO_TEST_CASE(test_tile)
}
}
BOOST_CHECK_EQUAL(number_of_keys, 5);
BOOST_CHECK_GT(number_of_values, 128); // speed value resolution
BOOST_CHECK_EQUAL(number_of_speed_keys, 5);
BOOST_CHECK_GT(number_of_speed_values, 128); // speed value resolution
tile_message.next();
layer_message = tile_message.get_message();
const auto check_turn_feature = [](protozero::pbf_reader feature_message) {
protozero::pbf_reader::const_uint32_iterator value_begin;
protozero::pbf_reader::const_uint32_iterator value_end;
feature_message.next(); // advance parser to first entry
BOOST_CHECK_EQUAL(feature_message.tag(), util::vector_tile::GEOMETRY_TAG);
BOOST_CHECK_EQUAL(feature_message.get_enum(), util::vector_tile::GEOMETRY_TYPE_POINT);
feature_message.next(); // advance to next entry
BOOST_CHECK_EQUAL(feature_message.tag(), util::vector_tile::ID_TAG);
feature_message.get_uint64(); // id
feature_message.next(); // advance to next entry
BOOST_CHECK_EQUAL(feature_message.tag(), util::vector_tile::FEATURE_ATTRIBUTES_TAG);
// properties
std::tie(value_begin, value_end) = feature_message.get_packed_uint32();
BOOST_CHECK_EQUAL(std::distance(value_begin, value_end), 6);
auto iter = value_begin;
BOOST_CHECK_EQUAL(*iter++, 0); // bearing_in key
*iter++;
BOOST_CHECK_EQUAL(*iter++, 1); // bearing_out key
*iter++;
BOOST_CHECK_EQUAL(*iter++, 2); // weight key
*iter++; // skip value check, can be valud uint32
BOOST_CHECK(iter == value_end);
// geometry
feature_message.next();
std::tie(value_begin, value_end) = feature_message.get_packed_uint32();
BOOST_CHECK_GT(std::distance(value_begin, value_end), 1);
};
auto number_of_turn_keys = 0u;
while (layer_message.next())
{
switch(layer_message.tag())
{
case util::vector_tile::VERSION_TAG:
BOOST_CHECK_EQUAL(layer_message.get_uint32(), 2);
break;
case util::vector_tile::NAME_TAG:
BOOST_CHECK_EQUAL(layer_message.get_string(), "turns");
break;
case util::vector_tile::EXTENT_TAG:
BOOST_CHECK_EQUAL(layer_message.get_uint32(), util::vector_tile::EXTENT);
break;
case util::vector_tile::FEATURE_TAG:
check_turn_feature(layer_message.get_message());
break;
case util::vector_tile::KEY_TAG:
layer_message.get_string();
number_of_turn_keys++;
break;
case util::vector_tile::VARIANT_TAG:
check_value(layer_message.get_message());
break;
default:
BOOST_CHECK(false); // invalid tag
break;
}
}
BOOST_CHECK_EQUAL(number_of_turn_keys, 3);
}
BOOST_AUTO_TEST_SUITE_END()