add comments, refactor find obvious turn
This commit is contained in:
parent
2a383efbf6
commit
0bd08224bf
@ -947,16 +947,17 @@ Feature: Collapse
|
||||
|
||||
#http://www.openstreetmap.org/#map=19/52.48778/13.30024
|
||||
Scenario: Hohenzollerdammbrücke
|
||||
Given a grid size of 10 meters
|
||||
Given the node map
|
||||
"""
|
||||
q s
|
||||
p o
|
||||
.. . .
|
||||
. . . .
|
||||
.. ..
|
||||
. . . .
|
||||
j - i - - - h - - - g - f
|
||||
> k < > l <
|
||||
a - b - - - c - - - d - e
|
||||
. . . .
|
||||
. . . .
|
||||
.. ..
|
||||
m n
|
||||
t r
|
||||
@ -1013,13 +1014,13 @@ Feature: Collapse
|
||||
| restriction | ph | hi | h | no_right_turn |
|
||||
|
||||
When I route I should get
|
||||
| waypoints | route | turns |
|
||||
| a,e | hohe,hohe | depart,arrive |
|
||||
| a,s | hohe,a100,a100 | depart,on ramp left,arrive |
|
||||
| a,t | hohe,a100,a100 | depart,on ramp right,arrive |
|
||||
| a,j | | |
|
||||
| f,j | hohe,hohe | depart,arrive |
|
||||
| a,t | hohe,a100,a100 | depart,on ramp right,arrive |
|
||||
| f,e | | |
|
||||
| q,j | a100,hohe,hohe | depart,turn right,arrive |
|
||||
| q,e | a100,a100,hohe | depart,continue left,arrive |
|
||||
| waypoints | route | turns | locations |
|
||||
| a,e | hohe,hohe | depart,arrive | a,e |
|
||||
| a,s | hohe,a100,a100 | depart,on ramp left,arrive | a,b,s |
|
||||
| a,t | hohe,a100,a100 | depart,on ramp right,arrive | a,b,t |
|
||||
| a,j | | | |
|
||||
| f,j | hohe,hohe | depart,arrive | f,j |
|
||||
| a,t | hohe,a100,a100 | depart,on ramp right,arrive | a,b,t |
|
||||
| f,e | | | |
|
||||
| q,j | a100,hohe,hohe | depart,turn right,arrive | q,p,j |
|
||||
| q,e | a100,hohebruecke,hohe | depart,turn left,arrive | q,p,e |
|
||||
|
119
features/guidance/low-priority.feature
Normal file
119
features/guidance/low-priority.feature
Normal file
@ -0,0 +1,119 @@
|
||||
@routing @guidance
|
||||
Feature: Exceptions for routing onto low-priority roads
|
||||
|
||||
Background:
|
||||
Given the profile "car"
|
||||
Given a grid size of 10 meters
|
||||
|
||||
Scenario: Straight onto low-priority: same name
|
||||
Given the node map
|
||||
"""
|
||||
c
|
||||
|
||||
a b d
|
||||
|
||||
e
|
||||
"""
|
||||
|
||||
And the ways
|
||||
| nodes | highway | name |
|
||||
| abd | residential | road |
|
||||
| eb | service | service |
|
||||
| bc | service | service |
|
||||
|
||||
When I route I should get
|
||||
| waypoints | route | turns |
|
||||
| c,e | service,service | depart,arrive |
|
||||
| e,c | service,service | depart,arrive |
|
||||
|
||||
Scenario: Straight onto low-priority: onto and from unnamed
|
||||
Given the node map
|
||||
"""
|
||||
c
|
||||
|
||||
a b d
|
||||
|
||||
e
|
||||
"""
|
||||
|
||||
And the ways
|
||||
| nodes | highway | name |
|
||||
| abd | residential | road |
|
||||
| eb | service | |
|
||||
| bc | service | |
|
||||
|
||||
When I route I should get
|
||||
| waypoints | route | turns |
|
||||
| e,c | , | depart,arrive |
|
||||
| c,e | , | depart,arrive |
|
||||
|
||||
Scenario: Straight onto low-priority: unnamed
|
||||
Given the node map
|
||||
"""
|
||||
c
|
||||
|
||||
a b d
|
||||
|
||||
e
|
||||
"""
|
||||
|
||||
And the ways
|
||||
| nodes | highway | name |
|
||||
| abd | residential | road |
|
||||
| eb | service | service |
|
||||
| bc | service | |
|
||||
|
||||
When I route I should get
|
||||
| waypoints | route | turns |
|
||||
| e,c | service, | depart,arrive |
|
||||
| c,e | ,service,service | depart,turn straight,arrive |
|
||||
|
||||
Scenario: Straight onto low-priority
|
||||
Given the node map
|
||||
"""
|
||||
a b c
|
||||
"""
|
||||
|
||||
And the ways
|
||||
| nodes | highway | name |
|
||||
| ab | residential | road |
|
||||
| bc | service | service |
|
||||
|
||||
When I route I should get
|
||||
| waypoints | route | turns |
|
||||
| a,c | road,service,service | depart,new name straight,arrive |
|
||||
|
||||
Scenario: Straight onto low-priority, with driveway
|
||||
Given the node map
|
||||
"""
|
||||
f
|
||||
a b c
|
||||
"""
|
||||
|
||||
And the ways
|
||||
| nodes | highway | name |
|
||||
| ab | residential | road |
|
||||
| bc | service | road |
|
||||
| bf | driveway | |
|
||||
|
||||
When I route I should get
|
||||
| waypoints | route | turns |
|
||||
| a,c | road,road | depart,arrive |
|
||||
|
||||
Scenario: Straight onto low-priority, with driveway
|
||||
Given the node map
|
||||
"""
|
||||
f
|
||||
a b c
|
||||
"""
|
||||
|
||||
And the ways
|
||||
| nodes | highway | name |
|
||||
| ab | residential | road |
|
||||
| bc | service | |
|
||||
| bf | driveway | |
|
||||
|
||||
When I route I should get
|
||||
| waypoints | route | turns |
|
||||
| a,c | road, | depart,arrive |
|
||||
| c,a | ,road,road | depart,new name straight,arrive |
|
@ -165,6 +165,7 @@ inline bool obviousByRoadClass(const RoadClassification in_classification,
|
||||
const RoadClassification obvious_candidate,
|
||||
const RoadClassification compare_candidate)
|
||||
{
|
||||
// lower numbers are of higher priority
|
||||
const bool has_high_priority = PRIORITY_DISTINCTION_FACTOR * obvious_candidate.GetPriority() <
|
||||
compare_candidate.GetPriority();
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
#include "extractor/guidance/intersection_handler.hpp"
|
||||
#include "extractor/guidance/constants.hpp"
|
||||
#include "extractor/guidance/intersection_handler.hpp"
|
||||
#include "extractor/guidance/toolkit.hpp"
|
||||
|
||||
#include "util/coordinate_calculation.hpp"
|
||||
@ -383,186 +383,210 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
if (intersection.size() == 2)
|
||||
return 1;
|
||||
|
||||
// at least three roads
|
||||
std::size_t best = 0;
|
||||
double best_deviation = 180;
|
||||
const EdgeData &in_way_data = node_based_graph.GetEdgeData(via_edge);
|
||||
|
||||
// the strategy for picking the most obvious turn involves deciding between
|
||||
// an overall best candidate and a best candidate that shares the same name
|
||||
// as the in road, i.e. a continue road
|
||||
std::size_t best_option = 0;
|
||||
double best_option_deviation = 180;
|
||||
std::size_t best_continue = 0;
|
||||
double best_continue_deviation = 180;
|
||||
|
||||
const EdgeData &in_data = node_based_graph.GetEdgeData(via_edge);
|
||||
const auto in_classification = in_data.road_classification;
|
||||
/* helper functions */
|
||||
const auto IsContinueRoad = [&](const EdgeData &way_data) {
|
||||
return !util::guidance::requiresNameAnnounced(
|
||||
in_way_data.name_id, way_data.name_id, name_table, street_name_suffix_table);
|
||||
};
|
||||
auto sameOrHigherPriority = [&in_way_data](const auto &way_data) {
|
||||
return way_data.road_classification.GetPriority() <=
|
||||
in_way_data.road_classification.GetPriority();
|
||||
};
|
||||
auto IsLowPriority = [](const auto &way_data) {
|
||||
return way_data.road_classification.IsLowPriorityRoadClass();
|
||||
};
|
||||
// These two Compare functions are used for sifting out best option and continue
|
||||
// candidates by evaluating all the ways in an intersection by what they share
|
||||
// with the in way. Ideal candidates are of similar road class with the in way
|
||||
// and are require relatively straight turns.
|
||||
const auto RoadCompare = [&](const ConnectedRoad &lhs, const ConnectedRoad &rhs) {
|
||||
const EdgeData &lhs_data = node_based_graph.GetEdgeData(lhs.eid);
|
||||
const EdgeData &rhs_data = node_based_graph.GetEdgeData(rhs.eid);
|
||||
const auto lhs_deviation = angularDeviation(lhs.angle, STRAIGHT_ANGLE);
|
||||
const auto rhs_deviation = angularDeviation(rhs.angle, STRAIGHT_ANGLE);
|
||||
|
||||
for (std::size_t i = 1; i < intersection.size(); ++i)
|
||||
const bool rhs_same_classification =
|
||||
rhs_data.road_classification == in_way_data.road_classification;
|
||||
const bool lhs_same_classification =
|
||||
lhs_data.road_classification == in_way_data.road_classification;
|
||||
const bool rhs_same_or_higher_priority = sameOrHigherPriority(rhs_data);
|
||||
const bool rhs_low_priority = IsLowPriority(rhs_data);
|
||||
const bool lhs_same_or_higher_priority = sameOrHigherPriority(lhs_data);
|
||||
const bool lhs_low_priority = IsLowPriority(lhs_data);
|
||||
auto left_tie = std::tie(lhs.entry_allowed,
|
||||
lhs_same_or_higher_priority,
|
||||
rhs_low_priority,
|
||||
rhs_deviation,
|
||||
lhs_same_classification);
|
||||
auto right_tie = std::tie(rhs.entry_allowed,
|
||||
rhs_same_or_higher_priority,
|
||||
lhs_low_priority,
|
||||
lhs_deviation,
|
||||
rhs_same_classification);
|
||||
return left_tie > right_tie;
|
||||
};
|
||||
const auto RoadCompareSameName = [&](const ConnectedRoad &lhs, const ConnectedRoad &rhs) {
|
||||
const EdgeData &lhs_data = node_based_graph.GetEdgeData(lhs.eid);
|
||||
const EdgeData &rhs_data = node_based_graph.GetEdgeData(rhs.eid);
|
||||
const auto lhs_continues = IsContinueRoad(lhs_data);
|
||||
const auto rhs_continues = IsContinueRoad(rhs_data);
|
||||
const auto left_tie = std::tie(lhs.entry_allowed, lhs_continues);
|
||||
const auto right_tie = std::tie(rhs.entry_allowed, rhs_continues);
|
||||
return left_tie > right_tie || (left_tie == right_tie && RoadCompare(lhs, rhs));
|
||||
};
|
||||
|
||||
auto best_option_it = std::min_element(begin(intersection), end(intersection), RoadCompare);
|
||||
|
||||
// min element should only return end() when vector is empty
|
||||
BOOST_ASSERT(best_option_it != end(intersection));
|
||||
|
||||
best_option = std::distance(begin(intersection), best_option_it);
|
||||
best_option_deviation = angularDeviation(intersection[best_option].angle, STRAIGHT_ANGLE);
|
||||
const auto &best_option_data = node_based_graph.GetEdgeData(intersection[best_option].eid);
|
||||
|
||||
// Unless the in way is also low priority, it is generally undesirable to
|
||||
// indicate that a low priority road is obvious
|
||||
if (IsLowPriority(best_option_data) &&
|
||||
best_option_data.road_classification != in_way_data.road_classification)
|
||||
{
|
||||
const double deviation = angularDeviation(intersection[i].angle, STRAIGHT_ANGLE);
|
||||
if (!intersection[i].entry_allowed)
|
||||
continue;
|
||||
best_option = 0;
|
||||
best_option_deviation = 180;
|
||||
}
|
||||
|
||||
const auto out_data = node_based_graph.GetEdgeData(intersection[i].eid);
|
||||
const auto continue_class =
|
||||
node_based_graph.GetEdgeData(intersection[best_continue].eid).road_classification;
|
||||
|
||||
const auto same_name = !util::guidance::requiresNameAnnounced(
|
||||
in_data.name_id, out_data.name_id, name_table, street_name_suffix_table);
|
||||
|
||||
if (same_name && (best_continue == 0 || (continue_class.GetPriority() >
|
||||
out_data.road_classification.GetPriority() &&
|
||||
in_classification != continue_class) ||
|
||||
(deviation < best_continue_deviation &&
|
||||
out_data.road_classification == continue_class) ||
|
||||
(continue_class != in_classification &&
|
||||
out_data.road_classification == continue_class)))
|
||||
// double check if the way with the lowest deviation from straight is still be better choice
|
||||
const auto straightest = intersection.findClosestTurn(STRAIGHT_ANGLE);
|
||||
if (straightest != best_option_it)
|
||||
{
|
||||
const EdgeData &straightest_data = node_based_graph.GetEdgeData(straightest->eid);
|
||||
double straightest_data_deviation = angularDeviation(straightest->angle, STRAIGHT_ANGLE);
|
||||
const auto deviation_diff =
|
||||
std::abs(best_option_deviation - straightest_data_deviation) > FUZZY_ANGLE_DIFFERENCE;
|
||||
const auto not_ramp_class = !straightest_data.road_classification.IsRampClass();
|
||||
const auto not_link_class = !straightest_data.road_classification.IsLinkClass();
|
||||
if (deviation_diff && !IsLowPriority(straightest_data) && not_ramp_class && not_link_class &&
|
||||
!IsContinueRoad(best_option_data))
|
||||
{
|
||||
best_continue_deviation = deviation;
|
||||
best_continue = i;
|
||||
}
|
||||
|
||||
const auto current_best_class =
|
||||
node_based_graph.GetEdgeData(intersection[best_continue].eid).road_classification;
|
||||
|
||||
// don't prefer low priority classes
|
||||
if (best != 0 && out_data.road_classification.IsLowPriorityRoadClass() &&
|
||||
!current_best_class.IsLowPriorityRoadClass())
|
||||
continue;
|
||||
|
||||
const bool is_better_choice_by_priority =
|
||||
best == 0 || obviousByRoadClass(in_data.road_classification,
|
||||
out_data.road_classification,
|
||||
current_best_class);
|
||||
|
||||
const bool other_is_better_choice_by_priority =
|
||||
best != 0 && obviousByRoadClass(in_data.road_classification,
|
||||
current_best_class,
|
||||
out_data.road_classification);
|
||||
|
||||
if ((!other_is_better_choice_by_priority && deviation < best_deviation) ||
|
||||
is_better_choice_by_priority)
|
||||
{
|
||||
best_deviation = deviation;
|
||||
best = i;
|
||||
best_option = std::distance(begin(intersection), straightest);
|
||||
best_option_deviation =
|
||||
angularDeviation(intersection[best_option].angle, STRAIGHT_ANGLE);
|
||||
}
|
||||
}
|
||||
|
||||
// We don't consider empty names a valid continue feature. This distinguishes between missing
|
||||
// names and actual continuing roads.
|
||||
if (in_data.name_id == EMPTY_NAMEID)
|
||||
best_continue = 0;
|
||||
|
||||
if (best == 0)
|
||||
// No non-low priority roads? Declare no obvious turn
|
||||
if (best_option == 0)
|
||||
return 0;
|
||||
|
||||
const std::pair<std::int64_t, std::int64_t> num_continue_names = [&]() {
|
||||
std::int64_t count = 0, count_valid = 0;
|
||||
if (in_data.name_id != EMPTY_NAMEID)
|
||||
{
|
||||
for (std::size_t i = 1; i < intersection.size(); ++i)
|
||||
{
|
||||
const auto &road = intersection[i];
|
||||
const auto &road_data = node_based_graph.GetEdgeData(road.eid);
|
||||
auto best_continue_it =
|
||||
std::min_element(begin(intersection), end(intersection), RoadCompareSameName);
|
||||
const auto best_continue_data = node_based_graph.GetEdgeData(best_continue_it->eid);
|
||||
if (IsContinueRoad(best_continue_data) || (in_way_data.name_id == EMPTY_NAMEID && best_continue_data.name_id == EMPTY_NAMEID))
|
||||
{
|
||||
best_continue = std::distance(begin(intersection), best_continue_it);
|
||||
best_continue_deviation =
|
||||
angularDeviation(intersection[best_continue].angle, STRAIGHT_ANGLE);
|
||||
}
|
||||
|
||||
const auto same_name = !util::guidance::requiresNameAnnounced(
|
||||
in_data.name_id, road_data.name_id, name_table, street_name_suffix_table);
|
||||
|
||||
if (same_name)
|
||||
{
|
||||
++count;
|
||||
if (road.entry_allowed)
|
||||
++count_valid;
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_pair(count, count_valid);
|
||||
}();
|
||||
|
||||
if (0 != best_continue && best != best_continue &&
|
||||
angularDeviation(intersection[best].angle, STRAIGHT_ANGLE) <
|
||||
MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
|
||||
// if the best angle is going straight but the road is turning, declare no obvious turn
|
||||
if (0 != best_continue && best_option != best_continue &&
|
||||
best_option_deviation < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
|
||||
node_based_graph.GetEdgeData(intersection[best_continue].eid).road_classification ==
|
||||
node_based_graph.GetEdgeData(intersection[best].eid).road_classification)
|
||||
best_option_data.road_classification)
|
||||
{
|
||||
// if the best angle is going straight but the road is turning, we don't name anything
|
||||
// obvious
|
||||
return 0;
|
||||
}
|
||||
|
||||
// get a count of number of ways from that intersection that qualify to have
|
||||
// continue instruction because they share a name with the approaching way
|
||||
const std::int64_t continue_count =
|
||||
count_if(++begin(intersection), end(intersection), [&](const ConnectedRoad &way) {
|
||||
return IsContinueRoad(node_based_graph.GetEdgeData(way.eid));
|
||||
});
|
||||
const std::int64_t continue_count_valid =
|
||||
count_if(++begin(intersection), end(intersection), [&](const ConnectedRoad &way) {
|
||||
return IsContinueRoad(node_based_graph.GetEdgeData(way.eid)) && way.entry_allowed;
|
||||
});
|
||||
|
||||
// checks if continue candidates are sharp turns
|
||||
const bool all_continues_are_narrow = [&]() {
|
||||
if (in_data.name_id == EMPTY_NAMEID)
|
||||
return false;
|
||||
|
||||
return std::count_if(
|
||||
intersection.begin() + 1, intersection.end(), [&](const ConnectedRoad &road) {
|
||||
const auto &road_data = node_based_graph.GetEdgeData(road.eid);
|
||||
const auto same_name =
|
||||
!util::guidance::requiresNameAnnounced(in_data.name_id,
|
||||
road_data.name_id,
|
||||
name_table,
|
||||
street_name_suffix_table);
|
||||
|
||||
return same_name &&
|
||||
angularDeviation(road.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE;
|
||||
}) == num_continue_names.first;
|
||||
begin(intersection), end(intersection), [&](const ConnectedRoad &road) {
|
||||
const EdgeData &road_data = node_based_graph.GetEdgeData(road.eid);
|
||||
const double &road_angle = angularDeviation(road.angle, STRAIGHT_ANGLE);
|
||||
return IsContinueRoad(road_data) && (road_angle < NARROW_TURN_ANGLE);
|
||||
}) == continue_count;
|
||||
}();
|
||||
|
||||
// has no obvious continued road
|
||||
const auto &best_data = node_based_graph.GetEdgeData(intersection[best].eid);
|
||||
|
||||
const auto check_non_continue = [&]() {
|
||||
// return true if the best_option candidate is more promising than the best_continue candidate
|
||||
// otherwise return false, the best_continue candidate is more promising
|
||||
const auto best_over_best_continue = [&]() {
|
||||
// no continue road exists
|
||||
if (best_continue == 0)
|
||||
return true;
|
||||
|
||||
// we have multiple continues and not all are narrow (treat all the same)
|
||||
if (!all_continues_are_narrow &&
|
||||
(num_continue_names.first >= 2 && intersection.size() >= 4))
|
||||
// we have multiple continues and not all are narrow. This suggests that
|
||||
// the continue candidates are ambiguous
|
||||
if (!all_continues_are_narrow && (continue_count >= 2 && intersection.size() >= 4))
|
||||
return true;
|
||||
|
||||
// if the best continue is not narrow and we also have at least 2 possible choices, the
|
||||
// intersection size does not matter anymore
|
||||
if (num_continue_names.second >= 2 && best_continue_deviation >= 2 * NARROW_TURN_ANGLE)
|
||||
if (continue_count_valid >= 2 && best_continue_deviation >= 2 * NARROW_TURN_ANGLE)
|
||||
return true;
|
||||
|
||||
// continue data now most certainly exists
|
||||
const auto &continue_data = node_based_graph.GetEdgeData(intersection[best_continue].eid);
|
||||
|
||||
if (obviousByRoadClass(in_data.road_classification,
|
||||
// best_continue is obvious by road class
|
||||
if (obviousByRoadClass(in_way_data.road_classification,
|
||||
continue_data.road_classification,
|
||||
best_data.road_classification))
|
||||
best_option_data.road_classification))
|
||||
return false;
|
||||
|
||||
if (obviousByRoadClass(in_data.road_classification,
|
||||
best_data.road_classification,
|
||||
// best_option is obvious by road class
|
||||
if (obviousByRoadClass(in_way_data.road_classification,
|
||||
best_option_data.road_classification,
|
||||
continue_data.road_classification))
|
||||
return true;
|
||||
|
||||
// the best deviation is very straight and not a ramp
|
||||
if (best_deviation < best_continue_deviation && best_deviation < FUZZY_ANGLE_DIFFERENCE &&
|
||||
!best_data.road_classification.IsRampClass())
|
||||
// the best_option deviation is very straight and not a ramp
|
||||
if (best_option_deviation < best_continue_deviation &&
|
||||
best_option_deviation < FUZZY_ANGLE_DIFFERENCE &&
|
||||
!best_option_data.road_classification.IsRampClass())
|
||||
return true;
|
||||
|
||||
// the continue road is of a lower priority, while the road continues on the same priority
|
||||
// with a better angle
|
||||
if (best_deviation < best_continue_deviation &&
|
||||
in_data.road_classification == best_data.road_classification &&
|
||||
if (best_option_deviation < best_continue_deviation &&
|
||||
in_way_data.road_classification == best_option_data.road_classification &&
|
||||
continue_data.road_classification.GetPriority() >
|
||||
best_data.road_classification.GetPriority())
|
||||
best_option_data.road_classification.GetPriority())
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}();
|
||||
|
||||
if (check_non_continue)
|
||||
if (best_over_best_continue)
|
||||
{
|
||||
// Find left/right deviation
|
||||
// skipping over service roads
|
||||
const std::size_t left_index = [&]() {
|
||||
const auto index_candidate = (best + 1) % intersection.size();
|
||||
const auto index_candidate = (best_option + 1) % intersection.size();
|
||||
if (index_candidate == 0)
|
||||
return index_candidate;
|
||||
const auto &candidate_data =
|
||||
node_based_graph.GetEdgeData(intersection[index_candidate].eid);
|
||||
if (obviousByRoadClass(in_data.road_classification,
|
||||
best_data.road_classification,
|
||||
if (obviousByRoadClass(in_way_data.road_classification,
|
||||
best_option_data.road_classification,
|
||||
candidate_data.road_classification))
|
||||
return (index_candidate + 1) % intersection.size();
|
||||
else
|
||||
@ -570,14 +594,14 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
|
||||
}();
|
||||
const auto right_index = [&]() {
|
||||
BOOST_ASSERT(best > 0);
|
||||
const auto index_candidate = best - 1;
|
||||
BOOST_ASSERT(best_option > 0);
|
||||
const auto index_candidate = best_option - 1;
|
||||
if (index_candidate == 0)
|
||||
return index_candidate;
|
||||
const auto candidate_data =
|
||||
node_based_graph.GetEdgeData(intersection[index_candidate].eid);
|
||||
if (obviousByRoadClass(in_data.road_classification,
|
||||
best_data.road_classification,
|
||||
if (obviousByRoadClass(in_way_data.road_classification,
|
||||
best_option_data.road_classification,
|
||||
candidate_data.road_classification))
|
||||
return index_candidate - 1;
|
||||
else
|
||||
@ -589,28 +613,32 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
const double right_deviation =
|
||||
angularDeviation(intersection[right_index].angle, STRAIGHT_ANGLE);
|
||||
|
||||
if (best_deviation < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
|
||||
// return best_option candidate if it is nearly straight and distinct from the nearest other
|
||||
// out
|
||||
// way
|
||||
if (best_option_deviation < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
|
||||
std::min(left_deviation, right_deviation) > FUZZY_ANGLE_DIFFERENCE)
|
||||
return best;
|
||||
return best_option;
|
||||
|
||||
const auto &left_data = node_based_graph.GetEdgeData(intersection[left_index].eid);
|
||||
const auto &right_data = node_based_graph.GetEdgeData(intersection[right_index].eid);
|
||||
|
||||
const bool obvious_to_left =
|
||||
left_index == 0 || obviousByRoadClass(in_data.road_classification,
|
||||
best_data.road_classification,
|
||||
left_index == 0 || obviousByRoadClass(in_way_data.road_classification,
|
||||
best_option_data.road_classification,
|
||||
left_data.road_classification);
|
||||
const bool obvious_to_right =
|
||||
right_index == 0 || obviousByRoadClass(in_data.road_classification,
|
||||
best_data.road_classification,
|
||||
right_index == 0 || obviousByRoadClass(in_way_data.road_classification,
|
||||
best_option_data.road_classification,
|
||||
right_data.road_classification);
|
||||
|
||||
// if the best turn isn't narrow, but there is a nearly straight turn, we don't consider the
|
||||
// if the best_option turn isn't narrow, but there is a nearly straight turn, we don't
|
||||
// consider the
|
||||
// turn obvious
|
||||
const auto check_narrow = [&intersection, best_deviation](const std::size_t index) {
|
||||
const auto check_narrow = [&intersection, best_option_deviation](const std::size_t index) {
|
||||
return angularDeviation(intersection[index].angle, STRAIGHT_ANGLE) <=
|
||||
FUZZY_ANGLE_DIFFERENCE &&
|
||||
(best_deviation > NARROW_TURN_ANGLE || intersection[index].entry_allowed);
|
||||
(best_option_deviation > NARROW_TURN_ANGLE || intersection[index].entry_allowed);
|
||||
};
|
||||
|
||||
// other narrow turns?
|
||||
@ -620,20 +648,23 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
if (check_narrow(left_index) && !obvious_to_left)
|
||||
return 0;
|
||||
|
||||
// check if a turn is distinct enough
|
||||
// checks if a given way in the intersection is distinct enough from the best_option
|
||||
// candidate
|
||||
const auto isDistinct = [&](const std::size_t index, const double deviation) {
|
||||
/*
|
||||
If the neighbor is not possible to enter, we allow for a lower
|
||||
distinction rate. If the road category is smaller, its also adjusted. Only
|
||||
roads of the same priority require the full distinction ratio.
|
||||
*/
|
||||
const auto &best_option_data =
|
||||
node_based_graph.GetEdgeData(intersection[best_option].eid);
|
||||
const auto adjusted_distinction_ratio = [&]() {
|
||||
// not allowed competitors are easily distinct
|
||||
if (!intersection[index].entry_allowed)
|
||||
return 0.7 * DISTINCTION_RATIO;
|
||||
// a bit less obvious are road classes
|
||||
else if (in_data.road_classification == best_data.road_classification &&
|
||||
best_data.road_classification.GetPriority() <
|
||||
else if (in_way_data.road_classification == best_option_data.road_classification &&
|
||||
best_option_data.road_classification.GetPriority() <
|
||||
node_based_graph.GetEdgeData(intersection[index].eid)
|
||||
.road_classification.GetPriority())
|
||||
return 0.8 * DISTINCTION_RATIO;
|
||||
@ -641,7 +672,7 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
else
|
||||
return DISTINCTION_RATIO;
|
||||
}();
|
||||
return index == 0 || deviation / best_deviation >= adjusted_distinction_ratio ||
|
||||
return index == 0 || deviation / best_option_deviation >= adjusted_distinction_ratio ||
|
||||
(deviation <= NARROW_TURN_ANGLE && !intersection[index].entry_allowed);
|
||||
};
|
||||
|
||||
@ -649,25 +680,24 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
const bool distinct_to_right = isDistinct(right_index, right_deviation);
|
||||
// Well distinct turn that is nearly straight
|
||||
if ((distinct_to_left || obvious_to_left) && (distinct_to_right || obvious_to_right))
|
||||
return best;
|
||||
return best_option;
|
||||
}
|
||||
else
|
||||
{
|
||||
const double deviation =
|
||||
angularDeviation(intersection[best_continue].angle, STRAIGHT_ANGLE);
|
||||
const auto &continue_data = node_based_graph.GetEdgeData(intersection[best_continue].eid);
|
||||
if (std::abs(deviation) < 1)
|
||||
if (std::abs(best_continue_deviation) < 1)
|
||||
return best_continue;
|
||||
|
||||
// check if any other similar best continues exist
|
||||
for (std::size_t i = 1; i < intersection.size(); ++i)
|
||||
std::size_t i, last = intersection.size();
|
||||
for (i = 1; i < last; ++i)
|
||||
{
|
||||
if (i == best_continue || !intersection[i].entry_allowed)
|
||||
continue;
|
||||
|
||||
const auto &turn_data = node_based_graph.GetEdgeData(intersection[i].eid);
|
||||
const bool is_obvious_by_road_class =
|
||||
obviousByRoadClass(in_data.road_classification,
|
||||
obviousByRoadClass(in_way_data.road_classification,
|
||||
continue_data.road_classification,
|
||||
turn_data.road_classification);
|
||||
|
||||
@ -677,7 +707,9 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
continue;
|
||||
|
||||
// continuation could be grouped with a straight turn and the turning road is a ramp
|
||||
if (turn_data.road_classification.IsRampClass() && deviation < GROUP_ANGLE)
|
||||
if (turn_data.road_classification.IsRampClass() &&
|
||||
best_continue_deviation < GROUP_ANGLE &&
|
||||
!continue_data.road_classification.IsRampClass())
|
||||
continue;
|
||||
|
||||
// perfectly straight turns prevent obviousness
|
||||
@ -685,9 +717,9 @@ std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
||||
if (turn_deviation < FUZZY_ANGLE_DIFFERENCE)
|
||||
return 0;
|
||||
|
||||
const auto deviation_ratio = turn_deviation / deviation;
|
||||
const auto deviation_ratio = turn_deviation / best_continue_deviation;
|
||||
|
||||
// in comparison to normal devitions, a continue road can offer a smaller distinction
|
||||
// in comparison to normal deviations, a continue road can offer a smaller distinction
|
||||
// ratio. Other roads close to the turn angle are not as obvious, if one road continues.
|
||||
if (deviation_ratio < DISTINCTION_RATIO / 1.5)
|
||||
return 0;
|
||||
|
Loading…
Reference in New Issue
Block a user