osrm-backend/DataStructures/SearchEngine.h

541 lines
24 KiB
C
Raw Normal View History

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#ifndef SEARCHENGINE_H_
#define SEARCHENGINE_H_
#include <climits>
#include <deque>
#include "SimpleStack.h"
#include <boost/thread.hpp>
#include "BinaryHeap.h"
#include "NodeInformationHelpDesk.h"
#include "PhantomNodes.h"
2011-07-07 04:05:58 -04:00
#include "../Util/StringUtil.h"
#include "../typedefs.h"
struct _HeapData {
2011-12-31 10:18:52 -05:00
NodeID parent;
_HeapData( NodeID p ) : parent(p) { }
};
typedef boost::thread_specific_ptr<BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> > > HeapPtr;
template<class EdgeData, class GraphT>
class SearchEngine {
private:
2011-12-31 10:18:52 -05:00
const GraphT * _graph;
NodeInformationHelpDesk * nodeHelpDesk;
std::vector<string> & _names;
2011-12-31 10:18:52 -05:00
static HeapPtr _forwardHeap;
static HeapPtr _backwardHeap;
static HeapPtr _forwardHeap2;
static HeapPtr _backwardHeap2;
inline double absDouble(double input) { if(input < 0) return input*(-1); else return input;}
public:
SearchEngine(GraphT * g, NodeInformationHelpDesk * nh, std::vector<string> & n) : _graph(g), nodeHelpDesk(nh), _names(n) {}
2011-12-31 10:18:52 -05:00
~SearchEngine() {}
inline const void GetCoordinatesForNodeID(NodeID id, _Coordinate& result) const {
result.lat = nodeHelpDesk->getLatitudeOfNode(id);
result.lon = nodeHelpDesk->getLongitudeOfNode(id);
}
inline void InitializeThreadLocalStorageIfNecessary() {
if(!_forwardHeap.get()) {
_forwardHeap.reset(new BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_forwardHeap->Clear();
if(!_backwardHeap.get()) {
_backwardHeap.reset(new BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_backwardHeap->Clear();
}
inline void InitializeThreadLocalViaStorageIfNecessary() {
if(!_forwardHeap2.get()) {
_forwardHeap2.reset(new BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_forwardHeap2->Clear();
if(!_backwardHeap2.get()) {
_backwardHeap2.reset(new BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_backwardHeap2->Clear();
}
template<class ContainerT>
void _RemoveConsecutiveDuplicatesFromContainer(ContainerT & packedPath) {
//remove consecutive duplicates
2011-12-31 10:18:52 -05:00
typename ContainerT::iterator it;
// using default comparison:
it = std::unique(packedPath.begin(), packedPath.end());
packedPath.resize(it - packedPath.begin());
}
int ComputeViaRoute(std::vector<PhantomNodes> & phantomNodesVector, std::vector<_PathData> & unpackedPath) {
BOOST_FOREACH(PhantomNodes & phantomNodePair, phantomNodesVector) {
if(!phantomNodePair.AtLeastOnePhantomNodeIsUINTMAX())
return INT_MAX;
}
int distance1 = 0;
int distance2 = 0;
bool searchFrom1stStartNode(true);
bool searchFrom2ndStartNode(true);
NodeID middle1 = ( NodeID ) UINT_MAX;
NodeID middle2 = ( NodeID ) UINT_MAX;
std::deque<NodeID> packedPath1;
std::deque<NodeID> packedPath2;
//Get distance to next pair of target nodes.
BOOST_FOREACH(PhantomNodes & phantomNodePair, phantomNodesVector) {
InitializeThreadLocalStorageIfNecessary();
InitializeThreadLocalViaStorageIfNecessary();
int _localUpperbound1 = INT_MAX;
int _localUpperbound2 = INT_MAX;
_forwardHeap->Clear();
_forwardHeap2->Clear();
//insert new starting nodes into forward heap, adjusted by previous distances.
if(searchFrom1stStartNode) {
2012-02-03 10:39:18 -05:00
_forwardHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode);
_forwardHeap2->Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode);
// INFO("a 1,2)forw insert " << phantomNodePair.startPhantom.edgeBasedNode << " with weight " << phantomNodePair.startPhantom.weight1);
2011-12-31 10:18:52 -05:00
// } else {
// INFO("Skipping first start node");
}
if(phantomNodePair.startPhantom.isBidirected() && searchFrom2ndStartNode) {
2012-02-03 10:39:18 -05:00
_forwardHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1);
_forwardHeap2->Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1);
// INFO("b 1,2)forw insert " << phantomNodePair.startPhantom.edgeBasedNode+1 << " with weight " << -phantomNodePair.startPhantom.weight1);
2011-12-31 10:18:52 -05:00
// } else if(!searchFrom2ndStartNode) {
// INFO("Skipping second start node");
}
_backwardHeap->Clear();
_backwardHeap2->Clear();
//insert new backward nodes into backward heap, unadjusted.
_backwardHeap->Insert(phantomNodePair.targetPhantom.edgeBasedNode, phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.edgeBasedNode);
// INFO("1) back insert " << phantomNodePair.targetPhantom.edgeBasedNode << " with weight " << phantomNodePair.targetPhantom.weight1);
2011-12-31 10:18:52 -05:00
if(phantomNodePair.targetPhantom.isBidirected() ) {
// INFO("2) back insert " << phantomNodePair.targetPhantom.edgeBasedNode+1 << " with weight " << phantomNodePair.targetPhantom.weight2);
2011-12-31 10:18:52 -05:00
_backwardHeap2->Insert(phantomNodePair.targetPhantom.edgeBasedNode+1, phantomNodePair.targetPhantom.weight2, phantomNodePair.targetPhantom.edgeBasedNode+1);
}
int offset = (phantomNodePair.startPhantom.isBidirected() ? std::max(phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.weight2) : phantomNodePair.startPhantom.weight1) ;
offset += (phantomNodePair.targetPhantom.isBidirected() ? std::max(phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.weight2) : phantomNodePair.targetPhantom.weight1) ;
//run two-Target Dijkstra routing step.
while(_forwardHeap->Size() + _backwardHeap->Size() > 0){
if(_forwardHeap->Size() > 0){
_RoutingStep<true>(_forwardHeap, _backwardHeap, &middle1, &_localUpperbound1, 2*offset);
2011-12-31 10:18:52 -05:00
}
if(_backwardHeap->Size() > 0){
_RoutingStep<false>(_backwardHeap, _forwardHeap, &middle1, &_localUpperbound1, 2*offset);
2011-12-31 10:18:52 -05:00
}
}
if(_backwardHeap2->Size() > 0) {
while(_forwardHeap2->Size() + _backwardHeap2->Size() > 0){
if(_forwardHeap2->Size() > 0){
_RoutingStep<true>(_forwardHeap2, _backwardHeap2, &middle2, &_localUpperbound2, 2*offset);
2011-12-31 10:18:52 -05:00
}
if(_backwardHeap2->Size() > 0){
_RoutingStep<false>(_backwardHeap2, _forwardHeap2, &middle2, &_localUpperbound2, 2*offset);
2011-12-31 10:18:52 -05:00
}
}
}
// INFO("upperbound1: " << _localUpperbound1 << ", distance1: " << distance1);
// INFO("upperbound2: " << _localUpperbound2 << ", distance2: " << distance2);
//No path found for both target nodes?
if(INT_MAX == _localUpperbound1 && INT_MAX == _localUpperbound2) {
return INT_MAX;
}
if(UINT_MAX == middle1) {
searchFrom1stStartNode = false;
// INFO("Next Search will not start from 1st");
} else {
// INFO("Next Search will start from 1st");
searchFrom1stStartNode = true;
}
if(UINT_MAX == middle2) {
searchFrom2ndStartNode = false;
// INFO("Next Search will not start from 2nd");
} else {
searchFrom2ndStartNode = true;
// INFO("Next Search will start from 2nd");
}
//Was at most one of the two paths not found?
assert(!(INT_MAX == distance1 && INT_MAX == distance2));
// INFO("middle1: " << middle1);
//Unpack paths if they exist
std::deque<NodeID> temporaryPackedPath1;
std::deque<NodeID> temporaryPackedPath2;
if(INT_MAX != _localUpperbound1) {
_RetrievePackedPathFromHeap(_forwardHeap, _backwardHeap, middle1, temporaryPackedPath1);
// INFO("temporaryPackedPath1 ends with " << *(temporaryPackedPath1.end()-1) );
2011-12-31 10:18:52 -05:00
}
// INFO("middle2: " << middle2);
if(INT_MAX != _localUpperbound2) {
_RetrievePackedPathFromHeap(_forwardHeap2, _backwardHeap2, middle2, temporaryPackedPath2);
// INFO("temporaryPackedPath2 ends with " << *(temporaryPackedPath2.end()-1) );
2011-12-31 10:18:52 -05:00
}
//if one of the paths was not found, replace it with the other one.
if(0 == temporaryPackedPath1.size()) {
// INFO("Deleting path 1");
2011-12-31 10:18:52 -05:00
temporaryPackedPath1.insert(temporaryPackedPath1.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end());
_localUpperbound1 = _localUpperbound2;
}
if(0 == temporaryPackedPath2.size()) {
// INFO("Deleting path 2");
2011-12-31 10:18:52 -05:00
temporaryPackedPath2.insert(temporaryPackedPath2.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end());
_localUpperbound2 = _localUpperbound1;
}
assert(0 < temporaryPackedPath1.size() && 0 < temporaryPackedPath2.size());
//Plug paths together, s.t. end of packed path is begin of temporary packed path
if(0 < packedPath1.size() && 0 < packedPath2.size() ) {
// INFO("Both paths are non-empty");
2011-12-31 10:18:52 -05:00
if( *(temporaryPackedPath1.begin()) == *(temporaryPackedPath2.begin())) {
// INFO("both paths start with the same node:" << *(temporaryPackedPath1.begin()));
2011-12-31 10:18:52 -05:00
//both new route segments start with the same node, thus one of the packedPath must go.
assert( (packedPath1.size() == packedPath2.size() ) || (*(packedPath1.end()-1) != *(packedPath2.end()-1)) );
if( *(packedPath1.end()-1) == *(temporaryPackedPath1.begin())) {
// INFO("Deleting packedPath2 that ends with " << *(packedPath2.end()-1) << ", other ends with " << *(packedPath1.end()-1));
2011-12-31 10:18:52 -05:00
packedPath2.clear();
packedPath2.insert(packedPath2.end(), packedPath1.begin(), packedPath1.end());
distance2 = distance1;
// INFO("packedPath2 now ends with " << *(packedPath2.end()-1));
2011-12-31 10:18:52 -05:00
} else {
// INFO("Deleting path1 that ends with " << *(packedPath1.end()-1) << ", other ends with " << *(packedPath2.end()-1));
packedPath1.clear();
2011-12-31 10:18:52 -05:00
packedPath1.insert(packedPath1.end(), packedPath2.begin(), packedPath2.end());
distance1 = distance2;
// INFO("Path1 now ends with " << *(packedPath1.end()-1));
2011-12-31 10:18:52 -05:00
}
} else {
//packed paths 1 and 2 may need to switch.
if(*(packedPath1.end()-1) != *(temporaryPackedPath1.begin())) {
// INFO("Switching");
2011-12-31 10:18:52 -05:00
packedPath1.swap(packedPath2);
std::swap(distance1, distance2);
}
}
}
packedPath1.insert(packedPath1.end(), temporaryPackedPath1.begin(), temporaryPackedPath1.end());
packedPath2.insert(packedPath2.end(), temporaryPackedPath2.begin(), temporaryPackedPath2.end());
if( (packedPath1.back() == packedPath2.back()) && phantomNodePair.targetPhantom.isBidirected() ) {
// INFO("both paths end in same direction on bidirected edge, make sure start only start with : " << packedPath1.back());
NodeID lastNodeID = packedPath2.back();
searchFrom1stStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode+1);
searchFrom2ndStartNode &= !(lastNodeID == phantomNodePair.targetPhantom.edgeBasedNode);
// INFO("Next search from node " << phantomNodePair.targetPhantom.edgeBasedNode << ": " << (searchFrom1stStartNode ? "yes" : "no") );
// INFO("Next search from node " << phantomNodePair.targetPhantom.edgeBasedNode+1 << ": " << (searchFrom2ndStartNode ? "yes" : "no") );
}
2011-12-31 10:18:52 -05:00
distance1 += _localUpperbound1;
distance2 += _localUpperbound2;
}
// INFO("length path1: " << distance1);
// INFO("length path2: " << distance2);
if(distance1 <= distance2){
//remove consecutive duplicates
// std::cout << "unclean 1: ";
// for(unsigned i = 0; i < packedPath1.size(); ++i)
// std::cout << packedPath1[i] << " ";
// std::cout << std::endl;
_RemoveConsecutiveDuplicatesFromContainer(packedPath1);
// std::cout << "cleaned 1: ";
// for(unsigned i = 0; i < packedPath1.size(); ++i)
// std::cout << packedPath1[i] << " ";
// std::cout << std::endl;
_UnpackPath(packedPath1, unpackedPath);
} else {
// std::cout << "unclean 2: ";
// for(unsigned i = 0; i < packedPath2.size(); ++i)
// std::cout << packedPath2[i] << " ";
// std::cout << std::endl;
_RemoveConsecutiveDuplicatesFromContainer(packedPath2);
// std::cout << "cleaned 2: ";
// for(unsigned i = 0; i < packedPath2.size(); ++i)
// std::cout << packedPath2[i] << " ";
// std::cout << std::endl;
_UnpackPath(packedPath2, unpackedPath);
}
// INFO("Found via route with distance " << std::min(distance1, distance2));
return std::min(distance1, distance2);
}
int ComputeRoute(PhantomNodes & phantomNodes, std::vector<_PathData> & path) {
int _upperbound = INT_MAX;
if(!phantomNodes.AtLeastOnePhantomNodeIsUINTMAX())
return _upperbound;
InitializeThreadLocalStorageIfNecessary();
NodeID middle = ( NodeID ) UINT_MAX;
//insert start and/or target node of start edge
_forwardHeap->Insert(phantomNodes.startPhantom.edgeBasedNode, -phantomNodes.startPhantom.weight1, phantomNodes.startPhantom.edgeBasedNode);
// INFO("a) forw insert " << phantomNodes.startPhantom.edgeBasedNode << ", weight: " << -phantomNodes.startPhantom.weight1);
if(phantomNodes.startPhantom.isBidirected() ) {
// INFO("b) forw insert " << phantomNodes.startPhantom.edgeBasedNode+1 << ", weight: " << -phantomNodes.startPhantom.weight2);
2011-12-31 10:18:52 -05:00
_forwardHeap->Insert(phantomNodes.startPhantom.edgeBasedNode+1, -phantomNodes.startPhantom.weight2, phantomNodes.startPhantom.edgeBasedNode+1);
}
//insert start and/or target node of target edge id
_backwardHeap->Insert(phantomNodes.targetPhantom.edgeBasedNode, phantomNodes.targetPhantom.weight1, phantomNodes.targetPhantom.edgeBasedNode);
// INFO("c) back insert " << phantomNodes.targetPhantom.edgeBasedNode << ", weight: " << phantomNodes.targetPhantom.weight1);
2011-12-31 10:18:52 -05:00
if(phantomNodes.targetPhantom.isBidirected() ) {
_backwardHeap->Insert(phantomNodes.targetPhantom.edgeBasedNode+1, phantomNodes.targetPhantom.weight2, phantomNodes.targetPhantom.edgeBasedNode+1);
// INFO("d) back insert " << phantomNodes.targetPhantom.edgeBasedNode+1 << ", weight: " << phantomNodes.targetPhantom.weight2);
2011-12-31 10:18:52 -05:00
}
int offset = (phantomNodes.startPhantom.isBidirected() ? std::max(phantomNodes.startPhantom.weight1, phantomNodes.startPhantom.weight2) : phantomNodes.startPhantom.weight1) ;
offset += (phantomNodes.targetPhantom.isBidirected() ? std::max(phantomNodes.targetPhantom.weight1, phantomNodes.targetPhantom.weight2) : phantomNodes.targetPhantom.weight1) ;
while(_forwardHeap->Size() + _backwardHeap->Size() > 0){
if(_forwardHeap->Size() > 0){
_RoutingStep<true>(_forwardHeap, _backwardHeap, &middle, &_upperbound, 2*offset);
2011-12-31 10:18:52 -05:00
}
if(_backwardHeap->Size() > 0){
_RoutingStep<false>(_backwardHeap, _forwardHeap, &middle, &_upperbound, 2*offset);
2011-12-31 10:18:52 -05:00
}
}
// INFO("dist: " << _upperbound);
2011-12-31 10:18:52 -05:00
if ( _upperbound == INT_MAX ) {
return _upperbound;
}
std::deque<NodeID> packedPath;
_RetrievePackedPathFromHeap(_forwardHeap, _backwardHeap, middle, packedPath);
//Setting weights to correspond with that of the actual chosen path
// if(packedPath[0] == phantomNodes.startPhantom.edgeBasedNode && phantomNodes.startPhantom.isBidirected()) {
// INFO("Setting weight1=" << phantomNodes.startPhantom.weight1 << " to that of weight2=" << phantomNodes.startPhantom.weight2);
// phantomNodes.startPhantom.weight1 = phantomNodes.startPhantom.weight2;
// } else {
// INFO("Setting weight2=" << phantomNodes.startPhantom.weight2 << " to that of weight1=" << phantomNodes.startPhantom.weight1);
// phantomNodes.startPhantom.weight2 = phantomNodes.startPhantom.weight1;
// }
2011-12-31 10:18:52 -05:00
// std::cout << "0: ";
// for(unsigned i = 0; i < packedPath.size(); ++i)
// std::cout << packedPath[i] << " ";
// std::cout << std::endl;
2011-12-31 10:18:52 -05:00
_UnpackPath(packedPath, path);
return _upperbound;
}
inline void FindRoutingStarts(const _Coordinate & start, const _Coordinate & target, PhantomNodes & routingStarts) const {
nodeHelpDesk->FindRoutingStarts(start, target, routingStarts);
}
inline void FindPhantomNodeForCoordinate(const _Coordinate & location, PhantomNode & result) const {
nodeHelpDesk->FindPhantomNodeForCoordinate(location, result);
}
inline NodeID GetNameIDForOriginDestinationNodeID(NodeID s, NodeID t) const {
if(s == t)
return 0;
EdgeID e = _graph->FindEdge(s, t);
if(e == UINT_MAX)
e = _graph->FindEdge( t, s );
if(UINT_MAX == e) {
return 0;
}
assert(e != UINT_MAX);
const EdgeData ed = _graph->GetEdgeData(e);
return ed.via;
}
inline std::string GetEscapedNameForNameID(const unsigned nameID) const {
INFO("Getting name for ID: " << nameID);
return ((nameID >= _names.size() || nameID == 0) ? std::string("") : HTMLEntitize(_names.at(nameID)));
2011-12-31 10:18:52 -05:00
}
inline std::string GetEscapedNameForEdgeBasedEdgeID(const unsigned edgeID) const {
const unsigned nameID = _graph->GetEdgeData(edgeID).nameID1;
return GetEscapedNameForNameID(nameID);
}
private:
inline void _RetrievePackedPathFromHeap(HeapPtr & _fHeap, HeapPtr & _bHeap, const NodeID middle, std::deque<NodeID>& packedPath) {
2011-12-31 10:18:52 -05:00
NodeID pathNode = middle;
if(_fHeap->GetData(pathNode).parent != middle) {
do {
pathNode = _fHeap->GetData(pathNode).parent;
packedPath.push_front(pathNode);
}while(pathNode != _fHeap->GetData(pathNode).parent);
2011-12-31 10:18:52 -05:00
}
packedPath.push_back(middle);
pathNode = middle;
if(_bHeap->GetData(pathNode).parent != middle) {
do{
pathNode = _bHeap->GetData(pathNode).parent;
packedPath.push_back(pathNode);
} while (pathNode != _bHeap->GetData(pathNode).parent);
2011-12-31 10:18:52 -05:00
}
// std::cout << "unpacking: ";
// for(std::deque<NodeID>::iterator it = packedPath.begin(); it != packedPath.end(); ++it)
// std::cout << *it << " ";
// std::cout << std::endl;
}
template<bool forwardDirection>
inline void _RoutingStep(HeapPtr & _forwardHeap, HeapPtr & _backwardHeap, NodeID *middle, int *_upperbound, const int edgeBasedOffset) const {
2011-12-31 10:18:52 -05:00
const NodeID node = _forwardHeap->DeleteMin();
const int distance = _forwardHeap->GetKey(node);
// INFO((forwardDirection ? "[forw]" : "[back]") << " settled node " << node << " at distance " << distance);
if(_backwardHeap->WasInserted(node) ){
// INFO((forwardDirection ? "[forw]" : "[back]") << " scanned node " << node << " in both directions");
const int newDistance = _backwardHeap->GetKey(node) + distance;
if(newDistance < *_upperbound ){
if(newDistance>=0 ) {
// INFO((forwardDirection ? "[forw]" : "[back]") << " -> node " << node << " is new middle at total distance " << newDistance);
*middle = node;
*_upperbound = newDistance;
} else {
// INFO((forwardDirection ? "[forw]" : "[back]") << " -> ignored " << node << " as new middle at total distance " << newDistance);
}
}
}
if(distance-edgeBasedOffset > *_upperbound){
_forwardHeap->DeleteAll();
return;
}
for ( typename GraphT::EdgeIterator edge = _graph->BeginEdges( node ); edge < _graph->EndEdges(node); edge++ ) {
const EdgeData & data = _graph->GetEdgeData(edge);
bool backwardDirectionFlag = (!forwardDirection) ? data.forward : data.backward;
if(backwardDirectionFlag) {
const NodeID to = _graph->GetTarget(edge);
const int edgeWeight = data.distance;
assert( edgeWeight > 0 );
//Stalling
if(_forwardHeap->WasInserted( to )) {
if(_forwardHeap->GetKey( to ) + edgeWeight < distance) {
return;
}
}
}
}
for ( typename GraphT::EdgeIterator edge = _graph->BeginEdges( node ); edge < _graph->EndEdges(node); edge++ ) {
const EdgeData & data = _graph->GetEdgeData(edge);
bool forwardDirectionFlag = (forwardDirection ? data.forward : data.backward );
if(forwardDirectionFlag) {
const NodeID to = _graph->GetTarget(edge);
const int edgeWeight = data.distance;
assert( edgeWeight > 0 );
const int toDistance = distance + edgeWeight;
//New Node discovered -> Add to Heap + Node Info Storage
if ( !_forwardHeap->WasInserted( to ) ) {
// INFO((forwardDirection ? "[forw]" : "[back]") << " scanning edge (" << node << "," << to << ") with distance " << toDistance << ", edge length: " << data.distance);
_forwardHeap->Insert( to, toDistance, node );
}
//Found a shorter Path -> Update distance
else if ( toDistance < _forwardHeap->GetKey( to ) ) {
// INFO((forwardDirection ? "[forw]" : "[back]") << " decrease and scanning edge (" << node << "," << to << ") from " << _forwardHeap->GetKey(to) << "to " << toDistance << ", edge length: " << data.distance);
_forwardHeap->GetData( to ).parent = node;
_forwardHeap->DecreaseKey( to, toDistance );
//new parent
}
}
}
}
inline void _UnpackPath(std::deque<NodeID> & packedPath, std::vector<_PathData> & unpackedPath) const {
const unsigned sizeOfPackedPath = packedPath.size();
std::stack<std::pair<NodeID, NodeID> > recursionStack;
2011-12-31 10:18:52 -05:00
//We have to push the path in reverse order onto the stack because it's LIFO.
for(unsigned i = sizeOfPackedPath-1; i > 0; --i){
recursionStack.push(std::make_pair(packedPath[i-1], packedPath[i]));
}
std::pair<NodeID, NodeID> edge;
while(!recursionStack.empty()) {
edge = recursionStack.top();
recursionStack.pop();
// INFO("Unpacking edge (" << edge.first << "," << edge.second << ")");
2011-12-31 10:18:52 -05:00
typename GraphT::EdgeIterator smallestEdge = SPECIAL_EDGEID;
int smallestWeight = INT_MAX;
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(edge.first);eit < _graph->EndEdges(edge.first);++eit){
const int weight = _graph->GetEdgeData(eit).distance;
if(_graph->GetTarget(eit) == edge.second && weight < smallestWeight && _graph->GetEdgeData(eit).forward){
// INFO("1smallest " << eit << ", " << weight);
2011-12-31 10:18:52 -05:00
smallestEdge = eit;
smallestWeight = weight;
}
}
if(smallestEdge == SPECIAL_EDGEID){
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(edge.second);eit < _graph->EndEdges(edge.second);++eit){
const int weight = _graph->GetEdgeData(eit).distance;
if(_graph->GetTarget(eit) == edge.first && weight < smallestWeight && _graph->GetEdgeData(eit).backward){
// INFO("2smallest " << eit << ", " << weight);
2011-12-31 10:18:52 -05:00
smallestEdge = eit;
smallestWeight = weight;
}
}
}
assert(smallestWeight != INT_MAX);
const EdgeData& ed = _graph->GetEdgeData(smallestEdge);
if(ed.shortcut) {//unpack
const NodeID middle = ed.id;
2011-12-31 10:18:52 -05:00
//again, we need to this in reversed order
recursionStack.push(std::make_pair(middle, edge.second));
recursionStack.push(std::make_pair(edge.first, middle));
} else {
assert(!ed.shortcut);
//TODO: Hier die lookups in den nodehelpdeks machen
unpackedPath.push_back(_PathData(ed.id, nodeHelpDesk->getNameIndexFromEdgeID(ed.id), nodeHelpDesk->getTurnInstructionFromEdgeID(ed.id), ed.distance) );
2011-12-31 10:18:52 -05:00
}
}
}
};
template<class EdgeData, class GraphT> HeapPtr SearchEngine<EdgeData, GraphT>::_forwardHeap;
template<class EdgeData, class GraphT> HeapPtr SearchEngine<EdgeData, GraphT>::_backwardHeap;
2011-12-31 10:18:52 -05:00
template<class EdgeData, class GraphT> HeapPtr SearchEngine<EdgeData, GraphT>::_forwardHeap2;
template<class EdgeData, class GraphT> HeapPtr SearchEngine<EdgeData, GraphT>::_backwardHeap2;
#endif /* SEARCHENGINE_H_ */