osrm-backend/include/extractor/guidance/toolkit.hpp

326 lines
12 KiB
C++
Raw Normal View History

2016-03-01 16:30:31 -05:00
#ifndef OSRM_GUIDANCE_TOOLKIT_HPP_
#define OSRM_GUIDANCE_TOOLKIT_HPP_
2016-02-24 04:29:23 -05:00
#include "util/bearing.hpp"
2016-02-24 04:29:23 -05:00
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include "extractor/compressed_edge_container.hpp"
#include "extractor/query_node.hpp"
2016-03-01 16:30:31 -05:00
#include "extractor/guidance/discrete_angle.hpp"
#include "extractor/guidance/classification_data.hpp"
#include "extractor/guidance/turn_instruction.hpp"
2016-02-24 04:29:23 -05:00
#include <map>
#include <cmath>
namespace osrm
{
2016-03-01 16:30:31 -05:00
namespace extractor
2016-02-24 04:29:23 -05:00
{
namespace guidance
{
namespace detail
{
const constexpr double DESIRED_SEGMENT_LENGTH = 10.0;
const constexpr bool shiftable_ccw[] = {false, true, true, false, false, true, true, false};
const constexpr bool shiftable_cw[] = {false, false, true, true, false, false, true, true};
2016-03-01 16:30:31 -05:00
const constexpr uint8_t modifier_bounds[detail::num_direction_modifiers] = {
0, 36, 93, 121, 136, 163, 220, 255};
2016-02-24 04:29:23 -05:00
const constexpr double discrete_angle_step_size = 360. / 256.;
template <typename IteratorType>
util::Coordinate
getCoordinateFromCompressedRange(util::Coordinate current_coordinate,
IteratorType compressed_geometry_begin,
const IteratorType compressed_geometry_end,
const util::Coordinate final_coordinate,
const std::vector<extractor::QueryNode> &query_nodes)
{
const auto extractCoordinateFromNode = [](const extractor::QueryNode &node) -> util::Coordinate
2016-02-24 04:29:23 -05:00
{
return {node.lon, node.lat};
};
double distance_to_current_coordinate = 0;
double distance_to_next_coordinate = 0;
// get the length that is missing from the current segment to reach DESIRED_SEGMENT_LENGTH
const auto getFactor = [](const double first_distance, const double second_distance)
{
BOOST_ASSERT(first_distance < detail::DESIRED_SEGMENT_LENGTH);
double segment_length = second_distance - first_distance;
BOOST_ASSERT(segment_length > 0);
BOOST_ASSERT(second_distance >= detail::DESIRED_SEGMENT_LENGTH);
double missing_distance = detail::DESIRED_SEGMENT_LENGTH - first_distance;
return missing_distance / segment_length;
};
for (auto compressed_geometry_itr = compressed_geometry_begin;
compressed_geometry_itr != compressed_geometry_end; ++compressed_geometry_itr)
{
const auto next_coordinate =
extractCoordinateFromNode(query_nodes[compressed_geometry_itr->node_id]);
distance_to_next_coordinate =
distance_to_current_coordinate +
util::coordinate_calculation::haversineDistance(current_coordinate, next_coordinate);
// reached point where coordinates switch between
if (distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH)
return util::coordinate_calculation::interpolateLinear(
getFactor(distance_to_current_coordinate, distance_to_next_coordinate),
current_coordinate, next_coordinate);
// prepare for next iteration
current_coordinate = next_coordinate;
distance_to_current_coordinate = distance_to_next_coordinate;
}
distance_to_next_coordinate =
distance_to_current_coordinate +
util::coordinate_calculation::haversineDistance(current_coordinate, final_coordinate);
// reached point where coordinates switch between
if (distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH)
return util::coordinate_calculation::interpolateLinear(
getFactor(distance_to_current_coordinate, distance_to_next_coordinate),
current_coordinate, final_coordinate);
else
return final_coordinate;
}
} // namespace detail
// Finds a (potentially inteprolated) coordinate that is DESIRED_SEGMENT_LENGTH away
// from the start of an edge
inline util::Coordinate
getRepresentativeCoordinate(const NodeID from_node,
const NodeID to_node,
const EdgeID via_edge_id,
const bool traverse_in_reverse,
const extractor::CompressedEdgeContainer &compressed_geometries,
const std::vector<extractor::QueryNode> &query_nodes)
{
const auto extractCoordinateFromNode = [](const extractor::QueryNode &node) -> util::Coordinate
2016-02-24 04:29:23 -05:00
{
return {node.lon, node.lat};
};
// Uncompressed roads are simple, return the coordinate at the end
if (!compressed_geometries.HasEntryForID(via_edge_id))
{
return extractCoordinateFromNode(traverse_in_reverse ? query_nodes[from_node]
: query_nodes[to_node]);
}
else
{
const auto &geometry = compressed_geometries.GetBucketReference(via_edge_id);
const auto base_node_id = (traverse_in_reverse) ? to_node : from_node;
const auto base_coordinate = extractCoordinateFromNode(query_nodes[base_node_id]);
const auto final_node = (traverse_in_reverse) ? from_node : to_node;
const auto final_coordinate = extractCoordinateFromNode(query_nodes[final_node]);
if (traverse_in_reverse)
return detail::getCoordinateFromCompressedRange(
base_coordinate, geometry.rbegin(), geometry.rend(), final_coordinate, query_nodes);
else
return detail::getCoordinateFromCompressedRange(
base_coordinate, geometry.begin(), geometry.end(), final_coordinate, query_nodes);
}
}
// shift an instruction around the degree circle in CCW order
2016-03-03 09:36:03 -05:00
inline DirectionModifier forcedShiftCCW(const DirectionModifier modifier)
2016-02-24 04:29:23 -05:00
{
2016-03-03 09:36:03 -05:00
return static_cast<DirectionModifier>((static_cast<uint32_t>(modifier) + 1) %
detail::num_direction_modifiers);
2016-02-24 04:29:23 -05:00
}
2016-03-03 09:36:03 -05:00
inline DirectionModifier shiftCCW(const DirectionModifier modifier)
2016-02-24 04:29:23 -05:00
{
if (detail::shiftable_ccw[static_cast<int>(modifier)])
return forcedShiftCCW(modifier);
else
return modifier;
}
// shift an instruction around the degree circle in CW order
2016-03-03 09:36:03 -05:00
inline DirectionModifier forcedShiftCW(const DirectionModifier modifier)
2016-02-24 04:29:23 -05:00
{
return static_cast<DirectionModifier>(
(static_cast<uint32_t>(modifier) + detail::num_direction_modifiers - 1) %
detail::num_direction_modifiers);
}
2016-03-03 09:36:03 -05:00
inline DirectionModifier shiftCW(const DirectionModifier modifier)
2016-02-24 04:29:23 -05:00
{
if (detail::shiftable_cw[static_cast<int>(modifier)])
return forcedShiftCW(modifier);
else
return modifier;
}
inline bool isBasic(const TurnType type)
{
2016-03-03 09:36:03 -05:00
return type == TurnType::Turn || type == TurnType::EndOfRoad;
2016-02-24 04:29:23 -05:00
}
inline bool isUturn(const TurnInstruction instruction)
{
2016-03-03 09:36:03 -05:00
return isBasic(instruction.type) && instruction.direction_modifier == DirectionModifier::UTurn;
2016-02-24 04:29:23 -05:00
}
2016-03-03 09:36:03 -05:00
inline bool resolve(TurnInstruction &to_resolve, const TurnInstruction neighbor, bool resolve_cw)
2016-02-24 04:29:23 -05:00
{
const auto shifted_turn = resolve_cw ? shiftCW(to_resolve.direction_modifier)
: shiftCCW(to_resolve.direction_modifier);
if (shifted_turn == neighbor.direction_modifier ||
shifted_turn == to_resolve.direction_modifier)
return false;
to_resolve.direction_modifier = shifted_turn;
return true;
}
inline bool resolveTransitive(TurnInstruction &first,
TurnInstruction &second,
const TurnInstruction third,
bool resolve_cw)
{
if (resolve(second, third, resolve_cw))
{
first.direction_modifier =
resolve_cw ? shiftCW(first.direction_modifier) : shiftCCW(first.direction_modifier);
return true;
}
return false;
}
inline bool isSlightTurn(const TurnInstruction turn)
{
return (isBasic(turn.type) || turn.type == TurnType::NoTurn) &&
(turn.direction_modifier == DirectionModifier::Straight ||
turn.direction_modifier == DirectionModifier::SlightRight ||
turn.direction_modifier == DirectionModifier::SlightLeft);
}
inline bool isSlightModifier(const DirectionModifier direction_modifier)
{
return (direction_modifier == DirectionModifier::Straight ||
direction_modifier == DirectionModifier::SlightRight ||
direction_modifier == DirectionModifier::SlightLeft);
}
inline bool isSharpTurn(const TurnInstruction turn)
{
2016-03-03 09:36:03 -05:00
return isBasic(turn.type) && (turn.direction_modifier == DirectionModifier::SharpLeft ||
turn.direction_modifier == DirectionModifier::SharpRight);
2016-02-24 04:29:23 -05:00
}
inline bool isStraight(const TurnInstruction turn)
{
return (isBasic(turn.type) || turn.type == TurnType::NoTurn) &&
turn.direction_modifier == DirectionModifier::Straight;
}
2016-03-03 09:36:03 -05:00
inline bool isConflict(const TurnInstruction first, const TurnInstruction second)
2016-02-24 04:29:23 -05:00
{
return (first.type == second.type && first.direction_modifier == second.direction_modifier) ||
(isStraight(first) && isStraight(second));
}
inline DiscreteAngle discretizeAngle(const double angle)
{
BOOST_ASSERT(angle >= 0. && angle <= 360.);
2016-03-03 09:36:03 -05:00
return DiscreteAngle(static_cast<uint8_t>(angle / detail::discrete_angle_step_size));
2016-02-24 04:29:23 -05:00
}
inline double angleFromDiscreteAngle(const DiscreteAngle angle)
{
return static_cast<double>(angle) * detail::discrete_angle_step_size;
}
inline double angularDeviation(const double angle, const double from)
{
const double deviation = std::abs(angle - from);
return std::min(360 - deviation, deviation);
}
inline double getAngularPenalty(const double angle, TurnInstruction instruction)
{
const double center[] = {0, 45, 90, 135, 180, 225, 270, 315};
return angularDeviation(center[static_cast<int>(instruction.direction_modifier)], angle);
}
inline double getTurnConfidence(const double angle, TurnInstruction instruction)
{
// special handling of U-Turns and Roundabout
2016-03-03 09:36:03 -05:00
if (!isBasic(instruction.type) || instruction.direction_modifier == DirectionModifier::UTurn)
2016-02-24 04:29:23 -05:00
return 1.0;
const double deviations[] = {0, 45, 50, 35, 10, 35, 50, 45};
const double difference = getAngularPenalty(angle, instruction);
const double max_deviation = deviations[static_cast<int>(instruction.direction_modifier)];
return 1.0 - (difference / max_deviation) * (difference / max_deviation);
}
// Translates between angles and their human-friendly directional representation
inline DirectionModifier getTurnDirection(const double angle)
{
// An angle of zero is a u-turn
// 180 goes perfectly straight
// 0-180 are right turns
// 180-360 are left turns
if (angle > 0 && angle < 60)
return DirectionModifier::SharpRight;
if (angle >= 60 && angle < 140)
return DirectionModifier::Right;
if (angle >= 140 && angle < 170)
return DirectionModifier::SlightRight;
if (angle >= 170 && angle <= 190)
return DirectionModifier::Straight;
if (angle > 190 && angle <= 220)
return DirectionModifier::SlightLeft;
if (angle > 220 && angle <= 300)
return DirectionModifier::Left;
if (angle > 300 && angle < 360)
return DirectionModifier::SharpLeft;
return DirectionModifier::UTurn;
}
// swaps left <-> right modifier types
2016-03-03 09:36:03 -05:00
inline DirectionModifier mirrorDirectionModifier(const DirectionModifier modifier)
2016-02-24 04:29:23 -05:00
{
2016-03-03 09:36:03 -05:00
const constexpr DirectionModifier results[] = {DirectionModifier::UTurn,
DirectionModifier::SharpLeft,
DirectionModifier::Left,
DirectionModifier::SlightLeft,
DirectionModifier::Straight,
DirectionModifier::SlightRight,
DirectionModifier::Right,
DirectionModifier::SharpRight};
2016-02-24 04:29:23 -05:00
return results[modifier];
}
inline bool canBeSuppressed(const TurnType type)
{
if (type == TurnType::Turn)
return true;
return false;
}
inline bool isLowPriorityRoadClass(const FunctionalRoadClass road_class)
{
return road_class == FunctionalRoadClass::LOW_PRIORITY_ROAD ||
road_class == FunctionalRoadClass::SERVICE;
}
} // namespace guidance
2016-03-01 16:30:31 -05:00
} // namespace extractor
2016-02-24 04:29:23 -05:00
} // namespace osrm
2016-03-01 16:30:31 -05:00
#endif // OSRM_GUIDANCE_TOOLKIT_HPP_