osrm-backend/src/extractor/node_based_graph_factory.cpp

250 lines
9.4 KiB
C++
Raw Normal View History

#include "extractor/node_based_graph_factory.hpp"
#include "extractor/graph_compressor.hpp"
2018-03-19 20:47:34 -04:00
#include "extractor/files.hpp"
#include "storage/io.hpp"
#include "util/log.hpp"
2017-10-20 11:10:32 -04:00
#include "util/timing_util.hpp"
#include <boost/assert.hpp>
2017-10-20 11:10:32 -04:00
#include <set>
namespace osrm
{
namespace extractor
{
NodeBasedGraphFactory::NodeBasedGraphFactory(
const boost::filesystem::path &input_file,
ScriptingEnvironment &scripting_environment,
std::vector<TurnRestriction> &turn_restrictions,
2018-02-09 13:32:09 -05:00
std::vector<ConditionalTurnRestriction> &conditional_turn_restrictions,
std::vector<UnresolvedManeuverOverride> &maneuver_overrides)
{
LoadDataFromFile(input_file);
2018-02-09 13:32:09 -05:00
Compress(scripting_environment,
turn_restrictions,
conditional_turn_restrictions,
maneuver_overrides);
CompressGeometry();
CompressAnnotationData();
}
// load the data serialised during the extraction run
void NodeBasedGraphFactory::LoadDataFromFile(const boost::filesystem::path &input_file)
{
auto barriers_iter = inserter(barriers, end(barriers));
auto traffic_signals_iter = inserter(traffic_signals, end(traffic_signals));
std::vector<NodeBasedEdge> edge_list;
2018-03-19 20:47:34 -04:00
files::readRawNBGraph(input_file, barriers_iter, traffic_signals_iter, coordinates, osm_node_ids, edge_list, annotation_data);
const auto number_of_node_based_nodes = coordinates.size();
if (edge_list.empty())
{
throw util::exception("Node-based-graph (" + input_file.string() + ") contains no edges." +
SOURCE_REF);
}
// at this point, the data isn't compressed, but since we update the graph in-place, we assign
// it here.
compressed_output_graph =
util::NodeBasedDynamicGraphFromEdges(number_of_node_based_nodes, edge_list);
// check whether the graph is sane
BOOST_ASSERT([this]() {
for (const auto nbg_node_u : util::irange(0u, compressed_output_graph.GetNumberOfNodes()))
{
for (EdgeID nbg_edge_id : compressed_output_graph.GetAdjacentEdgeRange(nbg_node_u))
{
// we cannot have invalid edge-ids in the graph
if (nbg_edge_id == SPECIAL_EDGEID)
return false;
const auto nbg_node_v = compressed_output_graph.GetTarget(nbg_edge_id);
auto reverse = compressed_output_graph.FindEdge(nbg_node_v, nbg_node_u);
// found an edge that is reversed in both directions, should be two distinct edges
if (compressed_output_graph.GetEdgeData(nbg_edge_id).reversed &&
compressed_output_graph.GetEdgeData(reverse).reversed)
return false;
}
}
return true;
}());
}
void NodeBasedGraphFactory::Compress(
ScriptingEnvironment &scripting_environment,
std::vector<TurnRestriction> &turn_restrictions,
2018-02-09 13:32:09 -05:00
std::vector<ConditionalTurnRestriction> &conditional_turn_restrictions,
std::vector<UnresolvedManeuverOverride> &maneuver_overrides)
{
GraphCompressor graph_compressor;
graph_compressor.Compress(barriers,
traffic_signals,
scripting_environment,
turn_restrictions,
conditional_turn_restrictions,
2018-02-09 13:32:09 -05:00
maneuver_overrides,
compressed_output_graph,
annotation_data,
compressed_edge_container);
}
void NodeBasedGraphFactory::CompressGeometry()
{
for (const auto nbg_node_u : util::irange(0u, compressed_output_graph.GetNumberOfNodes()))
{
for (EdgeID nbg_edge_id : compressed_output_graph.GetAdjacentEdgeRange(nbg_node_u))
{
BOOST_ASSERT(nbg_edge_id != SPECIAL_EDGEID);
const auto &nbg_edge_data = compressed_output_graph.GetEdgeData(nbg_edge_id);
const auto nbg_node_v = compressed_output_graph.GetTarget(nbg_edge_id);
BOOST_ASSERT(nbg_node_v != SPECIAL_NODEID);
BOOST_ASSERT(nbg_node_u != nbg_node_v);
// pick only every other edge, since we have every edge as an outgoing
// and incoming egde
if (nbg_node_u >= nbg_node_v)
{
continue;
}
auto from = nbg_node_u, to = nbg_node_v;
// if we found a non-forward edge reverse and try again
if (nbg_edge_data.reversed)
std::swap(from, to);
// find forward edge id and
const EdgeID edge_id_1 = compressed_output_graph.FindEdge(from, to);
BOOST_ASSERT(edge_id_1 != SPECIAL_EDGEID);
// find reverse edge id and
const EdgeID edge_id_2 = compressed_output_graph.FindEdge(to, from);
BOOST_ASSERT(edge_id_2 != SPECIAL_EDGEID);
auto packed_geometry_id = compressed_edge_container.ZipEdges(edge_id_1, edge_id_2);
// remember the geometry ID for both edges in the node-based graph
compressed_output_graph.GetEdgeData(edge_id_1).geometry_id = {packed_geometry_id, true};
compressed_output_graph.GetEdgeData(edge_id_2).geometry_id = {packed_geometry_id,
false};
}
}
}
void NodeBasedGraphFactory::CompressAnnotationData()
{
2017-10-20 11:10:32 -04:00
TIMER_START(compress_annotation);
/** Main idea, that we need to remove duplicated and unreferenced data
* For that:
* 1. We create set, that contains indecies of unique data items. Just create
* comparator, that compare data from annotation_data vector by passed index.
* 2. Create cached id's unordered_map, where key - stored id in set,
* value - index of item in a set from begin. We need that map, because
* std::distance(set.begin(), it) is too slow O(N). So any words in that step we reorder
* annotation data to the order it stored in a set. Apply new id's to edge data.
* 3. Remove unused anootation_data items.
* 4. At final step just need to sort result annotation_data in the same order as set.
* That makes id's stored in edge data valid.
*/
struct IndexComparator
{
IndexComparator(const std::vector<NodeBasedEdgeAnnotation> &annotation_data_)
: annotation_data(annotation_data_)
{
}
bool operator()(AnnotationID a, AnnotationID b) const
{
return annotation_data[a] < annotation_data[b];
}
private:
const std::vector<NodeBasedEdgeAnnotation> &annotation_data;
};
/** 1 */
IndexComparator comparator(annotation_data);
std::set<AnnotationID, IndexComparator> unique_annotations(comparator);
// first we mark entries, by setting their mapping to 0
for (const auto nbg_node_u : util::irange(0u, compressed_output_graph.GetNumberOfNodes()))
{
BOOST_ASSERT(nbg_node_u != SPECIAL_NODEID);
for (EdgeID nbg_edge_id : compressed_output_graph.GetAdjacentEdgeRange(nbg_node_u))
{
auto const &edge = compressed_output_graph.GetEdgeData(nbg_edge_id);
2017-10-20 11:10:32 -04:00
unique_annotations.insert(edge.annotation_data);
}
}
2017-10-20 11:10:32 -04:00
// make additional map, because std::distance of std::set seems is O(N)
// that very slow
/** 2 */
AnnotationID new_id = 0;
std::unordered_map<AnnotationID, AnnotationID> cached_ids;
for (auto id : unique_annotations)
cached_ids[id] = new_id++;
// apply the mapping
for (const auto nbg_node_u : util::irange(0u, compressed_output_graph.GetNumberOfNodes()))
{
BOOST_ASSERT(nbg_node_u != SPECIAL_NODEID);
for (EdgeID nbg_edge_id : compressed_output_graph.GetAdjacentEdgeRange(nbg_node_u))
{
auto &edge = compressed_output_graph.GetEdgeData(nbg_edge_id);
2017-10-20 11:10:32 -04:00
auto const it = unique_annotations.find(edge.annotation_data);
BOOST_ASSERT(it != unique_annotations.end());
auto const it2 = cached_ids.find(*it);
BOOST_ASSERT(it2 != cached_ids.end());
edge.annotation_data = it2->second;
}
}
2017-10-20 11:10:32 -04:00
/** 3 */
// mark unused references for remove
for (AnnotationID id = 0; id < annotation_data.size(); ++id)
{
auto const it = unique_annotations.find(id);
if (it == unique_annotations.end() || *it != id)
annotation_data[id].name_id = INVALID_NAMEID;
}
// remove unreferenced entries, shifting other entries to the front
const auto new_end =
std::remove_if(annotation_data.begin(), annotation_data.end(), [&](auto const &data) {
// both elements are considered equal (to remove the second
// one) if the annotation mapping of the second one is
// invalid
return data.name_id == INVALID_NAMEID;
});
const auto old_size = annotation_data.size();
// remove all remaining elements
annotation_data.erase(new_end, annotation_data.end());
2017-10-20 11:10:32 -04:00
// reorder data in the same order
/** 4 */
std::sort(annotation_data.begin(), annotation_data.end());
TIMER_STOP(compress_annotation);
util::Log() << " graph compression removed " << (old_size - annotation_data.size())
<< " annotations of " << old_size << " in " << TIMER_SEC(compress_annotation)
<< " seconds";
}
void NodeBasedGraphFactory::ReleaseOsmNodes()
{
// replace with a new vector to release old memory
extractor::PackedOSMIDs().swap(osm_node_ids);
}
} // namespace extractor
} // namespace osrm