osrm-backend/Contractor/Contractor.h

735 lines
32 KiB
C
Raw Normal View History

2010-07-09 05:05:40 -04:00
/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
2010-07-09 05:05:40 -04:00
#ifndef CONTRACTOR_H_INCLUDED
#define CONTRACTOR_H_INCLUDED
#include <algorithm>
#include <ctime>
#include <limits>
#include <queue>
#include <set>
#include <vector>
#include <stxxl.h>
#include <boost/shared_ptr.hpp>
#include "../DataStructures/DynamicGraph.h"
2010-10-01 06:30:46 -04:00
#include "../DataStructures/Percent.h"
#include "../DataStructures/BinaryHeap.h"
#include "../Util/OpenMPReplacement.h"
#include "../Util/StringUtil.h"
2010-07-09 05:05:40 -04:00
class Contractor {
private:
struct _ContractorEdgeData {
_ContractorEdgeData() :
distance(0), originalEdges(0), id(0)/*, nameID(0), turnInstruction(0)*/, shortcut(0), forward(0), backward(0) {}
_ContractorEdgeData( unsigned _distance, unsigned _originalEdges, unsigned _id, bool _shortcut, bool _forward, bool _backward) :
distance(_distance), originalEdges(std::min((unsigned)1<<28, _originalEdges) ), id(_id), shortcut(_shortcut), forward(_forward), backward(_backward), originalViaNodeID(false) {}
unsigned distance;
unsigned id;
unsigned originalEdges:28;
bool shortcut:1;
bool forward:1;
bool backward:1;
bool originalViaNodeID:1;
} data;
struct _HeapData {
short hop;
bool target;
_HeapData() : hop(0), target(false) {}
_HeapData( short h, bool t ) : hop(h), target(t) {}
};
typedef DynamicGraph< _ContractorEdgeData > _DynamicGraph;
typedef BinaryHeap< NodeID, NodeID, int, _HeapData > _Heap;
typedef _DynamicGraph::InputEdge _ContractorEdge;
struct _ThreadData {
_Heap heap;
std::vector< _ContractorEdge > insertedEdges;
std::vector< NodeID > neighbours;
_ThreadData( NodeID nodes ): heap( nodes ) {
}
};
struct _PriorityData {
int depth;
NodeID bias;
_PriorityData() : depth(0), bias(0) { }
};
struct _ContractionInformation {
int edgesDeleted;
int edgesAdded;
int originalEdgesDeleted;
int originalEdgesAdded;
_ContractionInformation() : edgesDeleted(0), edgesAdded(0), originalEdgesDeleted(0), originalEdgesAdded(0) {}
};
struct _NodePartitionor {
bool operator()( std::pair< NodeID, bool > & nodeData ) const {
return !nodeData.second;
}
};
2010-07-09 05:05:40 -04:00
public:
template<class ContainerT >
Contractor( int nodes, ContainerT& inputEdges) {
std::vector< _ContractorEdge > edges;
edges.reserve( 2 * inputEdges.size() );
BOOST_FOREACH(typename ContainerT::value_type & currentEdge, inputEdges) {
_ContractorEdge edge;
edge.source = currentEdge.source();
edge.target = currentEdge.target();
edge.data = _ContractorEdgeData( (std::max)((int)currentEdge.weight(), 1 ), 1, currentEdge.id()/*, currentEdge.getNameIDOfTurnTarget(), currentEdge.turnInstruction()*/, false, currentEdge.isForward(), currentEdge.isBackward());
assert( edge.data.distance > 0 );
2012-04-25 08:21:03 -04:00
#ifndef NDEBUG
if ( edge.data.distance > 24 * 60 * 60 * 10 ) {
std::cout << "Edge Weight too large -> May lead to invalid CH" << std::endl;
continue;
}
2011-03-15 11:19:20 -04:00
#endif
edges.push_back( edge );
std::swap( edge.source, edge.target );
edge.data.forward = currentEdge.isBackward();
edge.data.backward = currentEdge.isForward();
edges.push_back( edge );
}
2012-04-14 09:28:45 -04:00
//clear input vector and trim the current set of edges with the well-known swap trick
ContainerT().swap( inputEdges );
2012-04-14 09:28:45 -04:00
sort( edges.begin(), edges.end() );
NodeID edge = 0;
for ( NodeID i = 0; i < edges.size(); ) {
const NodeID source = edges[i].source;
const NodeID target = edges[i].target;
const NodeID id = edges[i].data.id;
// const short turnType = edges[i].data.turnInstruction;
//remove eigenloops
if ( source == target ) {
i++;
continue;
}
_ContractorEdge forwardEdge;
_ContractorEdge backwardEdge;
forwardEdge.source = backwardEdge.source = source;
forwardEdge.target = backwardEdge.target = target;
forwardEdge.data.forward = backwardEdge.data.backward = true;
forwardEdge.data.backward = backwardEdge.data.forward = false;
forwardEdge.data.shortcut = backwardEdge.data.shortcut = false;
forwardEdge.data.id = backwardEdge.data.id = id;
forwardEdge.data.originalEdges = backwardEdge.data.originalEdges = 1;
forwardEdge.data.distance = backwardEdge.data.distance = std::numeric_limits< int >::max();
//remove parallel edges
while ( i < edges.size() && edges[i].source == source && edges[i].target == target ) {
if ( edges[i].data.forward )
forwardEdge.data.distance = std::min( edges[i].data.distance, forwardEdge.data.distance );
if ( edges[i].data.backward )
backwardEdge.data.distance = std::min( edges[i].data.distance, backwardEdge.data.distance );
i++;
}
//merge edges (s,t) and (t,s) into bidirectional edge
if ( forwardEdge.data.distance == backwardEdge.data.distance ) {
if ( (int)forwardEdge.data.distance != std::numeric_limits< int >::max() ) {
forwardEdge.data.backward = true;
edges[edge++] = forwardEdge;
}
} else { //insert seperate edges
if ( ((int)forwardEdge.data.distance) != std::numeric_limits< int >::max() ) {
edges[edge++] = forwardEdge;
}
if ( (int)backwardEdge.data.distance != std::numeric_limits< int >::max() ) {
edges[edge++] = backwardEdge;
}
}
}
std::cout << "merged " << edges.size() - edge << " edges out of " << edges.size() << std::endl;
edges.resize( edge );
2012-04-14 09:28:45 -04:00
2012-05-08 05:12:53 -04:00
_graph.reset();
_graph.reset( new _DynamicGraph( nodes, edges ) );
INFO("Finished building dynamic graph");
edges.clear();
2012-03-07 02:49:10 -05:00
// unsigned maxdegree = 0;
// NodeID highestNode = 0;
//
// for(unsigned i = 0; i < _graph->GetNumberOfNodes(); ++i) {
// unsigned degree = _graph->EndEdges(i) - _graph->BeginEdges(i);
// if(degree > maxdegree) {
// maxdegree = degree;
// highestNode = i;
// }
// }
//
// INFO("edges at node with id " << highestNode << " has degree " << maxdegree);
// for(unsigned i = _graph->BeginEdges(highestNode); i < _graph->EndEdges(highestNode); ++i) {
// INFO(" ->(" << highestNode << "," << _graph->GetTarget(i) << "); via: " << _graph->GetEdgeData(i).via);
// }
//Create temporary file
GetTemporaryFileName(temporaryEdgeStorageFilename);
std::cout << "contractor finished initalization" << std::endl;
}
~Contractor() {
//Delete temporary file
2012-04-04 07:08:13 -04:00
remove(temporaryEdgeStorageFilename.c_str());
}
void Run() {
const NodeID numberOfNodes = _graph->GetNumberOfNodes();
Percent p (numberOfNodes);
unsigned maxThreads = omp_get_max_threads();
std::vector < _ThreadData* > threadData;
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
threadData.push_back( new _ThreadData( numberOfNodes ) );
}
std::cout << "Contractor is using " << maxThreads << " threads" << std::endl;
NodeID numberOfContractedNodes = 0;
std::vector< std::pair< NodeID, bool > > remainingNodes( numberOfNodes );
std::vector< double > nodePriority( numberOfNodes );
std::vector< _PriorityData > nodeData( numberOfNodes );
//initialize the variables
2010-07-09 05:05:40 -04:00
#pragma omp parallel for schedule ( guided )
for ( int x = 0; x < ( int ) numberOfNodes; ++x )
remainingNodes[x].first = x;
std::random_shuffle( remainingNodes.begin(), remainingNodes.end() );
for ( int x = 0; x < ( int ) numberOfNodes; ++x )
nodeData[remainingNodes[x].first].bias = x;
2010-07-09 05:05:40 -04:00
std::cout << "initializing elimination PQ ..." << std::flush;
2010-07-09 05:05:40 -04:00
#pragma omp parallel
{
_ThreadData* data = threadData[omp_get_thread_num()];
2011-11-25 08:43:56 -05:00
#pragma omp parallel for schedule ( guided )
for ( int x = 0; x < ( int ) numberOfNodes; ++x ) {
2012-03-07 02:49:10 -05:00
nodePriority[x] = _Evaluate( data, &nodeData[x], x );
}
}
std::cout << "ok" << std::endl << "preprocessing ..." << std::flush;
bool flushedContractor = false;
while ( numberOfContractedNodes < numberOfNodes ) {
2012-04-04 05:11:54 -04:00
if(!flushedContractor && (numberOfContractedNodes > (numberOfNodes*0.75) ) ){
INFO("Flushing memory after " << numberOfContractedNodes << " nodes");
//Delete old heap data to free memory that we need for the coming operations
for ( unsigned threadNum = 0; threadNum < maxThreads; threadNum++ ) {
delete threadData[threadNum];
}
threadData.clear();
//Create new priority array
std::vector<double> newNodePriority(remainingNodes.size());
//this map gives the old IDs from the new ones, necessary to get a consistent graph at the end of contraction
oldNodeIDFromNewNodeIDMap.resize(remainingNodes.size());
//this map gives the new IDs from the old ones, necessary to remap targets from the remaining graph
std::vector<NodeID> newNodeIDFromOldNodeIDMap(numberOfNodes, UINT_MAX);
//build forward and backward renumbering map and remap ids in remainingNodes and Priorities.
for(unsigned newNodeID = 0; newNodeID < remainingNodes.size(); ++newNodeID) {
//create renumbering maps in both directions
oldNodeIDFromNewNodeIDMap[newNodeID] = remainingNodes[newNodeID].first;
newNodeIDFromOldNodeIDMap[remainingNodes[newNodeID].first] = newNodeID;
newNodePriority[newNodeID] = nodePriority[remainingNodes[newNodeID].first];
remainingNodes[newNodeID].first = newNodeID;
}
//create new _DynamicGraph, goes out of scope after the renumbering
boost::shared_ptr<_DynamicGraph> _newGraph ( new _DynamicGraph(remainingNodes.size()) );
//Write dummy number of edges to temporary file
std::ofstream temporaryEdgeStorage(temporaryEdgeStorageFilename.c_str(), std::ios::binary);
initialFilePosition = temporaryEdgeStorage.tellp();
unsigned numberOfTemporaryEdges = 0;
temporaryEdgeStorage.write((char*)&numberOfTemporaryEdges, sizeof(unsigned));
//walk over all nodes
for(unsigned i = 0; i < _graph->GetNumberOfNodes(); ++i) {
//INFO("Restructuring node " << i << "|" << _graph->GetNumberOfNodes());
const NodeID start = i;
//UINT_MAX indicates that node is already contracted
for(_DynamicGraph::EdgeIterator currentEdge = _graph->BeginEdges(start); currentEdge < _graph->EndEdges(start); ++currentEdge) {
_DynamicGraph::EdgeData & data = _graph->GetEdgeData(currentEdge);
const NodeID target = _graph->GetTarget(currentEdge);
if(UINT_MAX == newNodeIDFromOldNodeIDMap[i] ){
//Save edges of this node w/o renumbering.
temporaryEdgeStorage.write((char*)&start, sizeof(NodeID));
temporaryEdgeStorage.write((char*)&target, sizeof(NodeID));
temporaryEdgeStorage.write((char*)&data, sizeof(_DynamicGraph::EdgeData));
++numberOfTemporaryEdges;
}else {
//node is not yet contracted.
//add (renumbered) outgoing edges to new DynamicGraph.
data.originalViaNodeID = true;
2012-04-04 07:08:13 -04:00
assert(UINT_MAX != newNodeIDFromOldNodeIDMap[start] );
assert(UINT_MAX != newNodeIDFromOldNodeIDMap[target]);
_newGraph->InsertEdge(newNodeIDFromOldNodeIDMap[start], newNodeIDFromOldNodeIDMap[target], data );
}
}
}
//Note the number of temporarily stored edges
temporaryEdgeStorage.seekp(initialFilePosition);
temporaryEdgeStorage.write((char*)&numberOfTemporaryEdges, sizeof(unsigned));
temporaryEdgeStorage.close();
2012-04-04 07:08:13 -04:00
// INFO("Flushed " << numberOfTemporaryEdges << " edges to disk");
//Delete map from old NodeIDs to new ones.
std::vector<NodeID>().swap(newNodeIDFromOldNodeIDMap);
//Replace old priorities array by new one
nodePriority.swap(newNodePriority);
//Delete old nodePriority vector
std::vector<double>().swap(newNodePriority);
//Alten Graphen löschen und neuen Graphen speichern.
//reinitialize heaps and ThreadData objects with appropriate size
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
threadData.push_back( new _ThreadData( _newGraph->GetNumberOfNodes() ) );
}
//old Graph is removed
_graph.swap(_newGraph);
flushedContractor = true;
}
const int last = ( int ) remainingNodes.size();
2011-11-25 08:43:56 -05:00
#pragma omp parallel
{
//determine independent node set
_ThreadData* const data = threadData[omp_get_thread_num()];
2011-11-25 08:43:56 -05:00
#pragma omp for schedule ( guided )
for ( int i = 0; i < last; ++i ) {
const NodeID node = remainingNodes[i].first;
remainingNodes[i].second = _IsIndependent( nodePriority, nodeData, data, node );
}
}
_NodePartitionor functor;
const std::vector < std::pair < NodeID, bool > >::const_iterator first = stable_partition( remainingNodes.begin(), remainingNodes.end(), functor );
const int firstIndependent = first - remainingNodes.begin();
//contract independent nodes
2010-07-09 05:05:40 -04:00
#pragma omp parallel
{
_ThreadData* data = threadData[omp_get_thread_num()];
2010-07-09 05:05:40 -04:00
#pragma omp for schedule ( guided ) nowait
for ( int position = firstIndependent ; position < last; ++position ) {
NodeID x = remainingNodes[position].first;
2012-03-07 02:49:10 -05:00
_Contract< false > ( data, x );
nodePriority[x] = -1;
}
std::sort( data->insertedEdges.begin(), data->insertedEdges.end() );
}
2010-07-09 05:05:40 -04:00
#pragma omp parallel
{
_ThreadData* data = threadData[omp_get_thread_num()];
2010-07-09 05:05:40 -04:00
#pragma omp for schedule ( guided ) nowait
for ( int position = firstIndependent ; position < last; ++position ) {
NodeID x = remainingNodes[position].first;
_DeleteIncomingEdges( data, x );
}
}
//insert new edges
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
_ThreadData& data = *threadData[threadNum];
for ( int i = 0; i < ( int ) data.insertedEdges.size(); ++i ) {
const _ContractorEdge& edge = data.insertedEdges[i];
_DynamicGraph::EdgeIterator currentEdgeID = _graph->FindEdge(edge.source, edge.target);
if(currentEdgeID != _graph->EndEdges(edge.source)) {
_DynamicGraph::EdgeData & currentEdgeData = _graph->GetEdgeData(currentEdgeID);
if(edge.data.forward == currentEdgeData.forward && edge.data.backward == currentEdgeData.backward ) {
if(_graph->GetEdgeData(_graph->FindEdge(edge.source, edge.target)).distance <= edge.data.distance) {
continue;
}
if(currentEdgeData.distance > edge.data.distance) {
currentEdgeData.distance = edge.data.distance;
continue;
}
}
}
_graph->InsertEdge( edge.source, edge.target, edge.data );
}
data.insertedEdges.clear();
}
//update priorities
2010-07-09 05:05:40 -04:00
#pragma omp parallel
{
_ThreadData* data = threadData[omp_get_thread_num()];
2010-07-09 05:05:40 -04:00
#pragma omp for schedule ( guided ) nowait
for ( int position = firstIndependent ; position < last; ++position ) {
NodeID x = remainingNodes[position].first;
2012-03-07 02:49:10 -05:00
_UpdateNeighbours( nodePriority, nodeData, data, x );
}
}
//remove contracted nodes from the pool
numberOfContractedNodes += last - firstIndependent;
remainingNodes.resize( firstIndependent );
std::vector< std::pair< NodeID, bool > >( remainingNodes ).swap( remainingNodes );
2012-03-07 02:49:10 -05:00
// unsigned maxdegree = 0;
// unsigned avgdegree = 0;
// unsigned mindegree = UINT_MAX;
// unsigned quaddegree = 0;
//
// for(unsigned i = 0; i < remainingNodes.size(); ++i) {
// unsigned degree = _graph->EndEdges(remainingNodes[i].first) - _graph->BeginEdges(remainingNodes[i].first);
// if(degree > maxdegree)
// maxdegree = degree;
// if(degree < mindegree)
// mindegree = degree;
//
// avgdegree += degree;
// quaddegree += (degree*degree);
// }
//
// avgdegree /= std::max((unsigned)1,(unsigned)remainingNodes.size() );
// quaddegree /= std::max((unsigned)1,(unsigned)remainingNodes.size() );
// INFO("rest: " << remainingNodes.size() << ", max: " << maxdegree << ", min: " << mindegree << ", avg: " << avgdegree << ", quad: " << quaddegree);
p.printStatus(numberOfContractedNodes);
}
for ( unsigned threadNum = 0; threadNum < maxThreads; threadNum++ ) {
delete threadData[threadNum];
}
}
template< class Edge >
void GetEdges( std::vector< Edge >& edges ) {
NodeID numberOfNodes = _graph->GetNumberOfNodes();
if(oldNodeIDFromNewNodeIDMap.size()) {
for ( NodeID node = 0; node < numberOfNodes; ++node ) {
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge < endEdges; edge++ ) {
const NodeID target = _graph->GetTarget( edge );
const _DynamicGraph::EdgeData& data = _graph->GetEdgeData( edge );
Edge newEdge;
newEdge.source = oldNodeIDFromNewNodeIDMap[node];
newEdge.target = oldNodeIDFromNewNodeIDMap[target];
assert(UINT_MAX != newEdge.source);
assert(UINT_MAX != newEdge.target);
newEdge.data.distance = data.distance;
newEdge.data.shortcut = data.shortcut;
if(!data.originalViaNodeID)
newEdge.data.id = oldNodeIDFromNewNodeIDMap[data.id];
else
newEdge.data.id = data.id;
assert(newEdge.data.id != UINT_MAX);
newEdge.data.forward = data.forward;
newEdge.data.backward = data.backward;
edges.push_back( newEdge );
}
}
}
std::ifstream temporaryEdgeStorage(temporaryEdgeStorageFilename.c_str(), std::ios::binary);
//Also get the edges from temporary storage
unsigned numberOfTemporaryEdges = 0;
temporaryEdgeStorage.read((char*)&numberOfTemporaryEdges, sizeof(unsigned));
//loads edges of graph before renumbering, no need for further numbering action.
NodeID start;
NodeID target;
_DynamicGraph::EdgeData data;
for(unsigned i = 0; i < numberOfTemporaryEdges; ++i) {
temporaryEdgeStorage.read((char*)&start, sizeof(NodeID));
temporaryEdgeStorage.read((char*)&target, sizeof(NodeID));
temporaryEdgeStorage.read((char*)&data, sizeof(_DynamicGraph::EdgeData));
Edge newEdge;
newEdge.source = start;
newEdge.target = target;
newEdge.data.distance = data.distance;
newEdge.data.shortcut = data.shortcut;
newEdge.data.id = data.id;
newEdge.data.forward = data.forward;
newEdge.data.backward = data.backward;
edges.push_back( newEdge );
}
temporaryEdgeStorage.close();
}
2010-07-09 05:05:40 -04:00
private:
inline void _Dijkstra( const int maxDistance, const unsigned numTargets, const int maxNodes, const int hopLimit, _ThreadData* const data ){
_Heap& heap = data->heap;
int nodes = 0;
unsigned targetsFound = 0;
while ( heap.Size() > 0 ) {
const NodeID node = heap.DeleteMin();
const int distance = heap.GetKey( node );
const short currentHop = heap.GetData( node ).hop+1;
if ( ++nodes > maxNodes )
return;
//Destination settled?
if ( distance > maxDistance )
return;
if ( heap.GetData( node ).target ) {
++targetsFound;
if ( targetsFound >= numTargets )
return;
}
if(currentHop >= hopLimit)
continue;
//iterate over all edges of node
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge != endEdges; ++edge ) {
const _ContractorEdgeData& data = _graph->GetEdgeData( edge );
if ( !data.forward )
continue;
const NodeID to = _graph->GetTarget( edge );
const int toDistance = distance + data.distance;
//New Node discovered -> Add to Heap + Node Info Storage
if ( !heap.WasInserted( to ) )
heap.Insert( to, toDistance, _HeapData(currentHop, false) );
//Found a shorter Path -> Update distance
else if ( toDistance < heap.GetKey( to ) ) {
heap.DecreaseKey( to, toDistance );
heap.GetData( to ).hop = currentHop;
}
}
}
}
2012-03-07 02:49:10 -05:00
double _Evaluate( _ThreadData* const data, _PriorityData* const nodeData, NodeID node){
_ContractionInformation stats;
//perform simulated contraction
2012-03-07 02:49:10 -05:00
_Contract< true> ( data, node, &stats );
// Result will contain the priority
2012-03-07 02:49:10 -05:00
double result;
if ( stats.edgesDeleted == 0 || stats.originalEdgesDeleted == 0 )
2012-03-07 02:49:10 -05:00
result = 1 * nodeData->depth;
else
result = 2 * ((( double ) stats.edgesAdded ) / stats.edgesDeleted ) + 4 * ((( double ) stats.originalEdgesAdded ) / stats.originalEdgesDeleted ) + 1 * nodeData->depth;
assert( result >= 0 );
return result;
}
2012-03-07 02:49:10 -05:00
template< bool Simulate >
bool _Contract( _ThreadData* data, NodeID node, _ContractionInformation* stats = NULL ) {
_Heap& heap = data->heap;
int insertedEdgesSize = data->insertedEdges.size();
std::vector< _ContractorEdge >& insertedEdges = data->insertedEdges;
for ( _DynamicGraph::EdgeIterator inEdge = _graph->BeginEdges( node ), endInEdges = _graph->EndEdges( node ); inEdge != endInEdges; ++inEdge ) {
const _ContractorEdgeData& inData = _graph->GetEdgeData( inEdge );
const NodeID source = _graph->GetTarget( inEdge );
if ( Simulate ) {
assert( stats != NULL );
++stats->edgesDeleted;
stats->originalEdgesDeleted += inData.originalEdges;
}
if ( !inData.backward )
continue;
heap.Clear();
heap.Insert( source, 0, _HeapData() );
if ( node != source )
heap.Insert( node, inData.distance, _HeapData() );
int maxDistance = 0;
unsigned numTargets = 0;
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
const _ContractorEdgeData& outData = _graph->GetEdgeData( outEdge );
if ( !outData.forward )
continue;
const NodeID target = _graph->GetTarget( outEdge );
const int pathDistance = inData.distance + outData.distance;
maxDistance = std::max( maxDistance, pathDistance );
if ( !heap.WasInserted( target ) ) {
heap.Insert( target, pathDistance, _HeapData( 0, true ) );
++numTargets;
} else if ( pathDistance < heap.GetKey( target ) ) {
heap.DecreaseKey( target, pathDistance );
}
}
if( Simulate )
_Dijkstra( maxDistance, numTargets, 1000, (true ? INT_MAX : 5), data );
else
_Dijkstra( maxDistance, numTargets, 2000, (true ? INT_MAX : 7), data );
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
const _ContractorEdgeData& outData = _graph->GetEdgeData( outEdge );
if ( !outData.forward )
continue;
const NodeID target = _graph->GetTarget( outEdge );
const int pathDistance = inData.distance + outData.distance;
const int distance = heap.GetKey( target );
if ( pathDistance <= distance ) {
if ( Simulate ) {
assert( stats != NULL );
stats->edgesAdded+=2;
stats->originalEdgesAdded += 2* ( outData.originalEdges + inData.originalEdges );
} else {
_ContractorEdge newEdge;
newEdge.source = source;
newEdge.target = target;
newEdge.data = _ContractorEdgeData( pathDistance, outData.originalEdges + inData.originalEdges, node/*, 0, inData.turnInstruction*/, true, true, false);;
insertedEdges.push_back( newEdge );
std::swap( newEdge.source, newEdge.target );
newEdge.data.forward = false;
newEdge.data.backward = true;
insertedEdges.push_back( newEdge );
}
}
}
}
if ( !Simulate ) {
for ( int i = insertedEdgesSize, iend = insertedEdges.size(); i < iend; ++i ) {
bool found = false;
for ( int other = i + 1 ; other < iend ; ++other ) {
if ( insertedEdges[other].source != insertedEdges[i].source )
continue;
if ( insertedEdges[other].target != insertedEdges[i].target )
continue;
if ( insertedEdges[other].data.distance != insertedEdges[i].data.distance )
continue;
if ( insertedEdges[other].data.shortcut != insertedEdges[i].data.shortcut )
continue;
insertedEdges[other].data.forward |= insertedEdges[i].data.forward;
insertedEdges[other].data.backward |= insertedEdges[i].data.backward;
found = true;
break;
}
if ( !found )
insertedEdges[insertedEdgesSize++] = insertedEdges[i];
}
insertedEdges.resize( insertedEdgesSize );
}
return true;
}
void _DeleteIncomingEdges( _ThreadData* data, NodeID node ) {
std::vector< NodeID >& neighbours = data->neighbours;
neighbours.clear();
//find all neighbours
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
const NodeID u = _graph->GetTarget( e );
if ( u != node )
neighbours.push_back( u );
}
//eliminate duplicate entries ( forward + backward edges )
std::sort( neighbours.begin(), neighbours.end() );
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
for ( int i = 0, e = ( int ) neighbours.size(); i < e; ++i ) {
// const NodeID u = neighbours[i];
_graph->DeleteEdgesTo( neighbours[i], node );
}
}
2012-03-07 02:49:10 -05:00
bool _UpdateNeighbours( std::vector< double > & priorities, std::vector< _PriorityData > & nodeData, _ThreadData* const data, NodeID node) {
std::vector< NodeID >& neighbours = data->neighbours;
neighbours.clear();
//find all neighbours
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
const NodeID u = _graph->GetTarget( e );
if ( u == node )
continue;
neighbours.push_back( u );
nodeData[u].depth = (std::max)(nodeData[node].depth + 1, nodeData[u].depth );
}
//eliminate duplicate entries ( forward + backward edges )
std::sort( neighbours.begin(), neighbours.end() );
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
int neighbourSize = ( int ) neighbours.size();
for ( int i = 0, e = neighbourSize; i < e; ++i ) {
const NodeID u = neighbours[i];
2012-03-07 02:49:10 -05:00
priorities[u] = _Evaluate( data, &( nodeData )[u], u );
}
return true;
}
bool _IsIndependent( const std::vector< double >& priorities, const std::vector< _PriorityData >& nodeData, _ThreadData* const data, NodeID node ) {
const double priority = priorities[node];
std::vector< NodeID >& neighbours = data->neighbours;
neighbours.clear();
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
const NodeID target = _graph->GetTarget( e );
const double targetPriority = priorities[target];
assert( targetPriority >= 0 );
//found a neighbour with lower priority?
if ( priority > targetPriority )
return false;
//tie breaking
if ( priority == targetPriority && nodeData[node].bias < nodeData[target].bias )
return false;
neighbours.push_back( target );
}
std::sort( neighbours.begin(), neighbours.end() );
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
//examine all neighbours that are at most 2 hops away
for ( std::vector< NodeID >::const_iterator i = neighbours.begin(), lastNode = neighbours.end(); i != lastNode; ++i ) {
const NodeID u = *i;
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( u ) ; e < _graph->EndEdges( u ) ; ++e ) {
const NodeID target = _graph->GetTarget( e );
const double targetPriority = priorities[target];
assert( targetPriority >= 0 );
//found a neighbour with lower priority?
if ( priority > targetPriority )
return false;
//tie breaking
if ( priority == targetPriority && nodeData[node].bias < nodeData[target].bias )
return false;
}
}
return true;
}
boost::shared_ptr<_DynamicGraph> _graph;
std::vector<_DynamicGraph::InputEdge> contractedEdges;
std::string temporaryEdgeStorageFilename;
std::vector<NodeID> oldNodeIDFromNewNodeIDMap;
long initialFilePosition;
2010-07-09 05:05:40 -04:00
};
#endif // CONTRACTOR_H_INCLUDED