osrm-backend/src/extractor/graph_compressor.cpp

359 lines
17 KiB
C++
Raw Normal View History

2016-01-02 11:13:44 -05:00
#include "extractor/graph_compressor.hpp"
2016-01-02 11:13:44 -05:00
#include "extractor/compressed_edge_container.hpp"
#include "extractor/extraction_turn.hpp"
#include "extractor/guidance/intersection.hpp"
#include "extractor/restriction.hpp"
#include "extractor/restriction_compressor.hpp"
2016-01-02 11:13:44 -05:00
#include "util/dynamic_graph.hpp"
#include "util/node_based_graph.hpp"
#include "util/percent.hpp"
#include "util/log.hpp"
#include <boost/assert.hpp>
#include <unordered_set>
2016-01-05 10:51:13 -05:00
namespace osrm
{
namespace extractor
{
void GraphCompressor::Compress(
const std::unordered_set<NodeID> &barrier_nodes,
const std::unordered_set<NodeID> &traffic_signals,
ScriptingEnvironment &scripting_environment,
std::vector<TurnRestriction> &turn_restrictions,
std::vector<ConditionalTurnRestriction> &conditional_turn_restrictions,
util::NodeBasedDynamicGraph &graph,
const std::vector<NodeBasedEdgeAnnotation> &node_data_container,
CompressedEdgeContainer &geometry_compressor)
{
const unsigned original_number_of_nodes = graph.GetNumberOfNodes();
const unsigned original_number_of_edges = graph.GetNumberOfEdges();
RestrictionCompressor restriction_compressor(turn_restrictions, conditional_turn_restrictions);
// we do not compress turn restrictions on degree two nodes. These nodes are usually used to
// indicated `directed` barriers
std::unordered_set<NodeID> restriction_via_nodes;
const auto remember_via_nodes = [&](const auto &restriction) {
if (restriction.Type() == RestrictionType::NODE_RESTRICTION)
{
const auto &node = restriction.AsNodeRestriction();
restriction_via_nodes.insert(node.via);
}
else
{
BOOST_ASSERT(restriction.Type() == RestrictionType::WAY_RESTRICTION);
const auto &way = restriction.AsWayRestriction();
restriction_via_nodes.insert(way.in_restriction.via);
restriction_via_nodes.insert(way.out_restriction.via);
}
};
std::for_each(turn_restrictions.begin(), turn_restrictions.end(), remember_via_nodes);
std::for_each(conditional_turn_restrictions.begin(),
conditional_turn_restrictions.end(),
remember_via_nodes);
{
const auto weight_multiplier =
scripting_environment.GetProfileProperties().GetWeightMultiplier();
util::UnbufferedLog log;
util::Percent progress(log, original_number_of_nodes);
for (const NodeID node_v : util::irange(0u, original_number_of_nodes))
{
progress.PrintStatus(node_v);
// only contract degree 2 vertices
if (2 != graph.GetOutDegree(node_v))
{
continue;
}
// don't contract barrier node
if (barrier_nodes.end() != barrier_nodes.find(node_v))
{
continue;
}
// check if v is a via node for a turn restriction, i.e. a 'directed' barrier node
if (restriction_via_nodes.count(node_v))
{
continue;
}
// reverse_e2 forward_e2
// u <---------- v -----------> w
// ----------> <-----------
// forward_e1 reverse_e1
//
// Will be compressed to:
//
// reverse_e1
// u <---------- w
// ---------->
// forward_e1
//
// If the edges are compatible.
const bool reverse_edge_order = graph.GetEdgeData(graph.BeginEdges(node_v)).reversed;
const EdgeID forward_e2 = graph.BeginEdges(node_v) + reverse_edge_order;
BOOST_ASSERT(SPECIAL_EDGEID != forward_e2);
BOOST_ASSERT(forward_e2 >= graph.BeginEdges(node_v) &&
forward_e2 < graph.EndEdges(node_v));
const EdgeID reverse_e2 = graph.BeginEdges(node_v) + 1 - reverse_edge_order;
BOOST_ASSERT(SPECIAL_EDGEID != reverse_e2);
BOOST_ASSERT(reverse_e2 >= graph.BeginEdges(node_v) &&
reverse_e2 < graph.EndEdges(node_v));
const EdgeData &fwd_edge_data2 = graph.GetEdgeData(forward_e2);
const EdgeData &rev_edge_data2 = graph.GetEdgeData(reverse_e2);
const NodeID node_w = graph.GetTarget(forward_e2);
BOOST_ASSERT(SPECIAL_NODEID != node_w);
BOOST_ASSERT(node_v != node_w);
const NodeID node_u = graph.GetTarget(reverse_e2);
BOOST_ASSERT(SPECIAL_NODEID != node_u);
BOOST_ASSERT(node_u != node_v);
const EdgeID forward_e1 = graph.FindEdge(node_u, node_v);
BOOST_ASSERT(SPECIAL_EDGEID != forward_e1);
BOOST_ASSERT(node_v == graph.GetTarget(forward_e1));
const EdgeID reverse_e1 = graph.FindEdge(node_w, node_v);
BOOST_ASSERT(SPECIAL_EDGEID != reverse_e1);
BOOST_ASSERT(node_v == graph.GetTarget(reverse_e1));
const EdgeData &fwd_edge_data1 = graph.GetEdgeData(forward_e1);
const EdgeData &rev_edge_data1 = graph.GetEdgeData(reverse_e1);
const auto fwd_annotation_data1 = node_data_container[fwd_edge_data1.annotation_data];
const auto fwd_annotation_data2 = node_data_container[fwd_edge_data2.annotation_data];
const auto rev_annotation_data1 = node_data_container[rev_edge_data1.annotation_data];
const auto rev_annotation_data2 = node_data_container[rev_edge_data2.annotation_data];
if (graph.FindEdgeInEitherDirection(node_u, node_w) != SPECIAL_EDGEID)
{
continue;
}
// this case can happen if two ways with different names overlap
if ((fwd_annotation_data1.name_id != rev_annotation_data1.name_id) ||
(fwd_annotation_data2.name_id != rev_annotation_data2.name_id))
{
continue;
}
if ((fwd_edge_data1.flags == fwd_edge_data2.flags) &&
(rev_edge_data1.flags == rev_edge_data2.flags) &&
(fwd_edge_data1.reversed == fwd_edge_data2.reversed) &&
(rev_edge_data1.reversed == rev_edge_data2.reversed) &&
// annotations need to match, except for the lane-id which can differ
fwd_annotation_data1.CanCombineWith(fwd_annotation_data2) &&
rev_annotation_data1.CanCombineWith(rev_annotation_data2))
{
BOOST_ASSERT(!(graph.GetEdgeData(forward_e1).reversed &&
graph.GetEdgeData(reverse_e1).reversed));
/*
* Remember Lane Data for compressed parts. This handles scenarios where lane-data
* is
* only kept up until a traffic light.
*
* | |
* ---------------- |
* -^ | |
* ----------- |
* -v | |
* --------------- |
* | |
*
* u ------- v ---- w
*
* Since the edge is compressable, we can transfer:
* "left|right" (uv) and "" (uw) into a string with "left|right" (uw) for the
* compressed
* edge.
* Doing so, we might mess up the point from where the lanes are shown. It should be
* reasonable, since the announcements have to come early anyhow. So there is a
* potential danger in here, but it saves us from adding a lot of additional edges
* for
* turn-lanes. Without this,we would have to treat any turn-lane beginning/ending
* just
* like a barrier.
*/
const auto selectAnnotation = [&node_data_container](
const AnnotationID front_annotation, const AnnotationID back_annotation) {
// A lane has tags: u - (front) - v - (back) - w
// During contraction, we keep only one of the tags. Usually the one closer to
// the intersection is preferred. If its empty, however, we keep the non-empty
// one
if (node_data_container[back_annotation].lane_description_id ==
INVALID_LANE_DESCRIPTIONID)
return front_annotation;
return back_annotation;
};
graph.GetEdgeData(forward_e1).annotation_data = selectAnnotation(
fwd_edge_data1.annotation_data, fwd_edge_data2.annotation_data);
graph.GetEdgeData(reverse_e1).annotation_data = selectAnnotation(
rev_edge_data1.annotation_data, rev_edge_data2.annotation_data);
graph.GetEdgeData(forward_e2).annotation_data = selectAnnotation(
fwd_edge_data2.annotation_data, fwd_edge_data1.annotation_data);
graph.GetEdgeData(reverse_e2).annotation_data = selectAnnotation(
rev_edge_data2.annotation_data, rev_edge_data1.annotation_data);
/*
// Do not compress edge if it crosses a traffic signal.
// This can't be done in CanCombineWith, becase we only store the
// traffic signals in the `traffic signal` list, which EdgeData
// doesn't have access to.
*/
const bool has_node_penalty = traffic_signals.find(node_v) != traffic_signals.end();
boost::optional<EdgeDuration> node_duration_penalty = boost::none;
boost::optional<EdgeWeight> node_weight_penalty = boost::none;
if (has_node_penalty)
{
// we cannot handle this as node penalty, if it depends on turn direction
if (fwd_edge_data1.flags.restricted != fwd_edge_data2.flags.restricted)
continue;
// generate an artifical turn for the turn penalty generation
std::vector<ExtractionTurnLeg> roads_on_the_right;
std::vector<ExtractionTurnLeg> roads_on_the_left;
ExtractionTurn extraction_turn(0,
2,
false,
true,
false,
false,
TRAVEL_MODE_DRIVING,
false,
false,
1,
0,
0,
0,
false,
TRAVEL_MODE_DRIVING,
false,
false,
1,
0,
0,
0,
roads_on_the_right,
roads_on_the_left);
scripting_environment.ProcessTurn(extraction_turn);
node_duration_penalty = extraction_turn.duration * 10;
node_weight_penalty = extraction_turn.weight * weight_multiplier;
}
// Get weights before graph is modified
const auto forward_weight1 = fwd_edge_data1.weight;
const auto forward_weight2 = fwd_edge_data2.weight;
const auto forward_duration1 = fwd_edge_data1.duration;
const auto forward_duration2 = fwd_edge_data2.duration;
BOOST_ASSERT(0 != forward_weight1);
BOOST_ASSERT(0 != forward_weight2);
const auto reverse_weight1 = rev_edge_data1.weight;
const auto reverse_weight2 = rev_edge_data2.weight;
const auto reverse_duration1 = rev_edge_data1.duration;
const auto reverse_duration2 = rev_edge_data2.duration;
BOOST_ASSERT(0 != reverse_weight1);
BOOST_ASSERT(0 != reverse_weight2);
// add weight of e2's to e1
graph.GetEdgeData(forward_e1).weight += forward_weight2;
graph.GetEdgeData(reverse_e1).weight += reverse_weight2;
// add duration of e2's to e1
graph.GetEdgeData(forward_e1).duration += forward_duration2;
graph.GetEdgeData(reverse_e1).duration += reverse_duration2;
if (node_weight_penalty && node_duration_penalty)
{
graph.GetEdgeData(forward_e1).weight += *node_weight_penalty;
graph.GetEdgeData(reverse_e1).weight += *node_weight_penalty;
graph.GetEdgeData(forward_e1).duration += *node_duration_penalty;
graph.GetEdgeData(reverse_e1).duration += *node_duration_penalty;
}
// extend e1's to targets of e2's
graph.SetTarget(forward_e1, node_w);
graph.SetTarget(reverse_e1, node_u);
// remove e2's (if bidir, otherwise only one)
graph.DeleteEdge(node_v, forward_e2);
graph.DeleteEdge(node_v, reverse_e2);
// update any involved turn restrictions
restriction_compressor.Compress(node_u, node_v, node_w);
// store compressed geometry in container
geometry_compressor.CompressEdge(forward_e1,
forward_e2,
node_v,
node_w,
forward_weight1,
forward_weight2,
forward_duration1,
forward_duration2,
node_weight_penalty,
node_duration_penalty);
geometry_compressor.CompressEdge(reverse_e1,
reverse_e2,
node_v,
node_u,
reverse_weight1,
reverse_weight2,
reverse_duration1,
reverse_duration2,
node_weight_penalty,
node_duration_penalty);
}
}
}
PrintStatistics(original_number_of_nodes, original_number_of_edges, graph);
// Repeate the loop, but now add all edges as uncompressed values.
// The function AddUncompressedEdge does nothing if the edge is already
// in the CompressedEdgeContainer.
for (const NodeID node_u : util::irange(0u, original_number_of_nodes))
{
for (const auto edge_id : util::irange(graph.BeginEdges(node_u), graph.EndEdges(node_u)))
{
const EdgeData &data = graph.GetEdgeData(edge_id);
const NodeID target = graph.GetTarget(edge_id);
geometry_compressor.AddUncompressedEdge(edge_id, target, data.weight, data.duration);
}
}
}
void GraphCompressor::PrintStatistics(unsigned original_number_of_nodes,
unsigned original_number_of_edges,
2016-01-05 10:51:13 -05:00
const util::NodeBasedDynamicGraph &graph) const
{
unsigned new_node_count = 0;
unsigned new_edge_count = 0;
2016-01-05 10:51:13 -05:00
for (const auto i : util::irange(0u, graph.GetNumberOfNodes()))
{
if (graph.GetOutDegree(i) > 0)
{
++new_node_count;
new_edge_count += (graph.EndEdges(i) - graph.BeginEdges(i));
}
}
util::Log() << "Node compression ratio: " << new_node_count / (double)original_number_of_nodes;
util::Log() << "Edge compression ratio: " << new_edge_count / (double)original_number_of_edges;
}
2016-01-05 10:51:13 -05:00
}
}