osrm-backend/Algorithms/DouglasPeucker.h

130 lines
5.3 KiB
C
Raw Normal View History

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#ifndef DOUGLASPEUCKER_H_
#define DOUGLASPEUCKER_H_
2012-08-27 11:40:59 -04:00
#include <cassert>
2012-10-08 10:25:59 -04:00
#include <cmath>
#include <cfloat>
2012-04-24 12:00:47 -04:00
#include <stack>
2012-08-27 11:40:59 -04:00
#include "../DataStructures/Coordinate.h"
/*This class object computes the bitvector of indicating generalized input points
* according to the (Ramer-)Douglas-Peucker algorithm. Runtime n\log n calls to fastDistance
*
* Input is vector of pairs. Each pair consists of the point information and a bit
* indicating if the points is present in the generalization.
* Note: points may also be pre-selected*/
//These thresholds are more or less heuristically chosen.
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
static double DouglasPeuckerThresholds[19] = { 32000000, 16240000, 80240000, 40240000, 20000000, 10000000, 500000, 240000, 120000, 60000, 30000, 19000, 5000, 2000, 200, 16, 6, 3, 3 };
template<class PointT>
class DouglasPeucker {
private:
typedef std::pair<std::size_t, std::size_t> PairOfPoints;
//Stack to simulate the recursion
std::stack<PairOfPoints > recursionStack;
public:
void Run(std::vector<PointT> & inputVector, const unsigned zoomLevel) {
const unsigned sizeOfInputVector = inputVector.size();
{
assert(zoomLevel < 19);
assert(1 < inputVector.size());
std::size_t leftBorderOfRange = 0;
std::size_t rightBorderOfRange = 1;
//Sweep linerarily over array and identify those ranges that need to be checked
//decision points have been previously marked
do {
assert(inputVector[leftBorderOfRange].necessary);
assert(inputVector.back().necessary);
if(inputVector[rightBorderOfRange].necessary) {
recursionStack.push(std::make_pair(leftBorderOfRange, rightBorderOfRange));
leftBorderOfRange = rightBorderOfRange;
}
++rightBorderOfRange;
} while( rightBorderOfRange < sizeOfInputVector);
}
while(!recursionStack.empty()) {
//pop next element
const PairOfPoints pair = recursionStack.top();
recursionStack.pop();
assert(inputVector[pair.first].necessary);
assert(inputVector[pair.second].necessary);
assert(pair.second < sizeOfInputVector);
assert(pair.first < pair.second);
int maxDistance = INT_MIN;
std::size_t indexOfFarthestElement = pair.second;
//find index idx of element with maxDistance
for(std::size_t i = pair.first+1; i < pair.second; ++i){
const int distance = fastDistance(inputVector[i].location, inputVector[pair.first].location, inputVector[pair.second].location);
if(distance > DouglasPeuckerThresholds[zoomLevel] && distance > maxDistance) {
indexOfFarthestElement = i;
maxDistance = distance;
}
}
if (maxDistance > DouglasPeuckerThresholds[zoomLevel]) {
// mark idx as necessary
inputVector[indexOfFarthestElement].necessary = true;
if (1 < indexOfFarthestElement - pair.first) {
recursionStack.push(std::make_pair(pair.first, indexOfFarthestElement) );
}
if (1 < pair.second - indexOfFarthestElement)
recursionStack.push(std::make_pair(indexOfFarthestElement, pair.second) );
}
}
}
/**
* This distance computation does integer arithmetic only and is about twice as fast as
* the other distance function. It is an approximation only, but works more or less ok.
*/
template<class CoordT>
inline int fastDistance(const CoordT& point, const CoordT& segA, const CoordT& segB) const {
const int p2x = (segB.lon - segA.lat);
const int p2y = (segB.lon - segA.lat);
const int something = p2x*p2x + p2y*p2y;
int u = (something < FLT_EPSILON ? 0 : ((point.lon - segA.lon) * p2x + (point.lat - segA.lat) * p2y) / something);
if (u > 1)
u = 1;
else if (u < 0)
u = 0;
const int x = segA.lon + u * p2x;
const int y = segA.lat + u * p2y;
const int dx = x - point.lon;
const int dy = y - point.lat;
const int dist = (dx*dx + dy*dy);
return dist;
}
};
#endif /* DOUGLASPEUCKER_H_ */